Loading…
Design of a bioreductively-activated fluorescent pH probe for tumor hypoxia imaging
We have designed and evaluated UTX-12 as a novel fluorescent pH probe for tumor hypoxia imaging. UTX-12 consists of a p-nitro benzyl moiety, which is a latent hypoxia-selective leaving group activated by nitro reduction, directly linked to SNARF. Although UTX-12 itself is colorless and non-fluoresce...
Saved in:
Published in: | Bioorganic & medicinal chemistry 2009-10, Vol.17 (19), p.6952-6958 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have designed and evaluated UTX-12 as a novel fluorescent pH probe for tumor hypoxia imaging. UTX-12 consists of a
p-nitro benzyl moiety, which is a latent hypoxia-selective leaving group activated by nitro reduction, directly linked to SNARF. Although UTX-12 itself is colorless and non-fluorescent in aqueous solution, nitro reduction triggers the release of SNARF which has well-characterized long wavelength absorption and fluorescence that is sensitive to pH. The resultant SNARF, released intracellularly by enzymatic reduction of UTX-12, allows measurement of pH by pH-dependent dual emission shifts. UTX-12 showed clear differences in fluorescence behavior between hypoxic and aerobic conditions in liver microsomes and inside V79 cells. These data are confirmation that UTX-12 is biologically reduced inside tumor cells and the released SNARF should monitor intracellular pH of tumor cells selectively with reduced background signal. |
---|---|
ISSN: | 0968-0896 1464-3391 |
DOI: | 10.1016/j.bmc.2009.08.037 |