Loading…
Gold Nanoparticle-Fluorophore Complexes: Sensitive and Discerning "Noses" for Biosystems Sensing
Gold nanoparticles (NPs) efficiently quench adsorbed fluorophores. Upon disruption of such complexes by an analyte, fluorescence turn‐on is observed. By judicious choice of the functionalized NP and the fluorophore, these complexes display different responses to analytes, thus leading to versatile y...
Saved in:
Published in: | Angewandte Chemie International Edition 2010-04, Vol.49 (19), p.3268-3279 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Gold nanoparticles (NPs) efficiently quench adsorbed fluorophores. Upon disruption of such complexes by an analyte, fluorescence turn‐on is observed. By judicious choice of the functionalized NP and the fluorophore, these complexes display different responses to analytes, thus leading to versatile yet simple array‐based sensor platforms. Using this strategy, we can identify proteins in buffer and serum, distinguish between both different species and different strains of bacteria, and differentiate between healthy, cancerous, and metastatic human and murine cells.
Disruption desired: Different monolayer‐protected nanoparticle–fluorophore constructs are used in indicator‐displacement assays to spy on proteins, bacteria, cells, and ions (see picture). The modus operandi involves disruption of the preformed quencher–fluorophore complexes, leading to partial and analyte‐dependent fluorescence turn‐on. Small libraries of nanoparticle–fluorophore complexes get the sensing job for different biological analytes done. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.200906928 |