Loading…
H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha
[NiFe]‐hydrogenases catalyze the oxidation of H2 to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni–Fe active site and several [Fe–S] clusters. H2 catalysis of most [NiFe]‐hydrogenases is sensitive to dioxygen. However, some bacteri...
Saved in:
Published in: | Chemphyschem 2010-04, Vol.11 (6), p.1107-1119 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1119 |
container_issue | 6 |
container_start_page | 1107 |
container_title | Chemphyschem |
container_volume | 11 |
creator | Lenz, Oliver Ludwig, Marcus Schubert, Torsten Bürstel, Ingmar Ganskow, Stefanie Goris, Tobias Schwarze, Alexander Friedrich, Bärbel |
description | [NiFe]‐hydrogenases catalyze the oxidation of H2 to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni–Fe active site and several [Fe–S] clusters. H2 catalysis of most [NiFe]‐hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H2 even in the presence of O2. There is now compelling evidence that O2 affects hydrogenase on three levels: 1) H2 catalysis, 2) hydrogenase maturation, and 3) H2‐mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O2 tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane‐bound [NiFe]‐hydogenase, which currently represents the best‐characterized member of O2‐tolerant hydrogenases.
Oxygen‐tolerant hydrogenases: The inherent properties by which membrane‐bound [NiFe]‐hydrogenases of aerobic H2‐oxidizing microorganisms are able to catalyze H2 conversion in the presence of molecular oxygen are discussed. |
doi_str_mv | 10.1002/cphc.200901002 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733914153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1020837800</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3752-983c9f4450b3c7aa6aa2a992a4eb738807ac6d7a662b02d0c7d432a6479ffb4e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEoqWwZYm8QbBJuX7EjpeQ0g5SaUc81AVCluPcMIaZeLATYP49ns4w7GBj-9rfubbPKYrHFE4pAHvh1gt3ygA0bMs7xTEVXJdKCnp3vxaMV0fFg5S-AkANit4vjhjQWmqQx0WYMdKE4QfG5MNA_EDGBZJ5xISDQxJ6cs2ITWSOsQ9xhR1pN7fIW1y10Q5YvgrT0JFPV_4cP5ezTRfDFxxsutW-s8s0hsFbgtMYw3phHxb3-ryJj_bzSfHx_PWHZlZeXl-8aV5elp6ripW65k73QlTQcqesldYyqzWzAlvF6_wN62SnrJSsBdaBU53gzEqhdN-3AvlJ8WzXdx3D9wnTaFY-OVwu85PDlIziXFNBK57J5_8kKasrqEUe_48Cg5qrGiCjT_bo1GbXzDr6lY0b88f5DDzdAzY5u-yzl86nvxxTkgu5vVPvuJ9-iZvDOQWzDdxs8zeH_E0znzWHKmvLndanEX8dtDZ-M1Jln83N1YVpmrPqvbzR5oz_BmYnsGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1020837800</pqid></control><display><type>article</type><title>H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha</title><source>Wiley</source><creator>Lenz, Oliver ; Ludwig, Marcus ; Schubert, Torsten ; Bürstel, Ingmar ; Ganskow, Stefanie ; Goris, Tobias ; Schwarze, Alexander ; Friedrich, Bärbel</creator><creatorcontrib>Lenz, Oliver ; Ludwig, Marcus ; Schubert, Torsten ; Bürstel, Ingmar ; Ganskow, Stefanie ; Goris, Tobias ; Schwarze, Alexander ; Friedrich, Bärbel</creatorcontrib><description>[NiFe]‐hydrogenases catalyze the oxidation of H2 to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni–Fe active site and several [Fe–S] clusters. H2 catalysis of most [NiFe]‐hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H2 even in the presence of O2. There is now compelling evidence that O2 affects hydrogenase on three levels: 1) H2 catalysis, 2) hydrogenase maturation, and 3) H2‐mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O2 tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane‐bound [NiFe]‐hydogenase, which currently represents the best‐characterized member of O2‐tolerant hydrogenases.
Oxygen‐tolerant hydrogenases: The inherent properties by which membrane‐bound [NiFe]‐hydrogenases of aerobic H2‐oxidizing microorganisms are able to catalyze H2 conversion in the presence of molecular oxygen are discussed.</description><identifier>ISSN: 1439-4235</identifier><identifier>ISSN: 1439-7641</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.200901002</identifier><identifier>PMID: 20186906</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biocatalysis ; Biological and medical sciences ; Catalysis ; Catalytic Domain ; Cell physiology ; Chemistry ; Colloidal state and disperse state ; Cupriavidus necator - enzymology ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; General and physical chemistry ; hydrogen ; Hydrogen - chemistry ; Hydrogen - metabolism ; hydrogen technology ; Hydrogenase - metabolism ; hydrogenases ; Mechanisms. Catalysis. Electron transfer. Models ; Membranes ; metal-cofactor assembly ; Molecular and cellular biology ; Molecular biophysics ; Oxidation-Reduction ; oxygen ; Oxygen - chemistry ; Physical chemistry in biology ; Ralstonia eutropha ; Signal transduction ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemphyschem, 2010-04, Vol.11 (6), p.1107-1119</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22763465$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20186906$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, Oliver</creatorcontrib><creatorcontrib>Ludwig, Marcus</creatorcontrib><creatorcontrib>Schubert, Torsten</creatorcontrib><creatorcontrib>Bürstel, Ingmar</creatorcontrib><creatorcontrib>Ganskow, Stefanie</creatorcontrib><creatorcontrib>Goris, Tobias</creatorcontrib><creatorcontrib>Schwarze, Alexander</creatorcontrib><creatorcontrib>Friedrich, Bärbel</creatorcontrib><title>H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha</title><title>Chemphyschem</title><addtitle>ChemPhysChem</addtitle><description>[NiFe]‐hydrogenases catalyze the oxidation of H2 to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni–Fe active site and several [Fe–S] clusters. H2 catalysis of most [NiFe]‐hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H2 even in the presence of O2. There is now compelling evidence that O2 affects hydrogenase on three levels: 1) H2 catalysis, 2) hydrogenase maturation, and 3) H2‐mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O2 tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane‐bound [NiFe]‐hydogenase, which currently represents the best‐characterized member of O2‐tolerant hydrogenases.
Oxygen‐tolerant hydrogenases: The inherent properties by which membrane‐bound [NiFe]‐hydrogenases of aerobic H2‐oxidizing microorganisms are able to catalyze H2 conversion in the presence of molecular oxygen are discussed.</description><subject>Biocatalysis</subject><subject>Biological and medical sciences</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cell physiology</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Cupriavidus necator - enzymology</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General and physical chemistry</subject><subject>hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen - metabolism</subject><subject>hydrogen technology</subject><subject>Hydrogenase - metabolism</subject><subject>hydrogenases</subject><subject>Mechanisms. Catalysis. Electron transfer. Models</subject><subject>Membranes</subject><subject>metal-cofactor assembly</subject><subject>Molecular and cellular biology</subject><subject>Molecular biophysics</subject><subject>Oxidation-Reduction</subject><subject>oxygen</subject><subject>Oxygen - chemistry</subject><subject>Physical chemistry in biology</subject><subject>Ralstonia eutropha</subject><subject>Signal transduction</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1439-4235</issn><issn>1439-7641</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhSMEoqWwZYm8QbBJuX7EjpeQ0g5SaUc81AVCluPcMIaZeLATYP49ns4w7GBj-9rfubbPKYrHFE4pAHvh1gt3ygA0bMs7xTEVXJdKCnp3vxaMV0fFg5S-AkANit4vjhjQWmqQx0WYMdKE4QfG5MNA_EDGBZJ5xISDQxJ6cs2ITWSOsQ9xhR1pN7fIW1y10Q5YvgrT0JFPV_4cP5ezTRfDFxxsutW-s8s0hsFbgtMYw3phHxb3-ryJj_bzSfHx_PWHZlZeXl-8aV5elp6ripW65k73QlTQcqesldYyqzWzAlvF6_wN62SnrJSsBdaBU53gzEqhdN-3AvlJ8WzXdx3D9wnTaFY-OVwu85PDlIziXFNBK57J5_8kKasrqEUe_48Cg5qrGiCjT_bo1GbXzDr6lY0b88f5DDzdAzY5u-yzl86nvxxTkgu5vVPvuJ9-iZvDOQWzDdxs8zeH_E0znzWHKmvLndanEX8dtDZ-M1Jln83N1YVpmrPqvbzR5oz_BmYnsGA</recordid><startdate>20100426</startdate><enddate>20100426</enddate><creator>Lenz, Oliver</creator><creator>Ludwig, Marcus</creator><creator>Schubert, Torsten</creator><creator>Bürstel, Ingmar</creator><creator>Ganskow, Stefanie</creator><creator>Goris, Tobias</creator><creator>Schwarze, Alexander</creator><creator>Friedrich, Bärbel</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7QL</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>20100426</creationdate><title>H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha</title><author>Lenz, Oliver ; Ludwig, Marcus ; Schubert, Torsten ; Bürstel, Ingmar ; Ganskow, Stefanie ; Goris, Tobias ; Schwarze, Alexander ; Friedrich, Bärbel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3752-983c9f4450b3c7aa6aa2a992a4eb738807ac6d7a662b02d0c7d432a6479ffb4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biocatalysis</topic><topic>Biological and medical sciences</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cell physiology</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Cupriavidus necator - enzymology</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General and physical chemistry</topic><topic>hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen - metabolism</topic><topic>hydrogen technology</topic><topic>Hydrogenase - metabolism</topic><topic>hydrogenases</topic><topic>Mechanisms. Catalysis. Electron transfer. Models</topic><topic>Membranes</topic><topic>metal-cofactor assembly</topic><topic>Molecular and cellular biology</topic><topic>Molecular biophysics</topic><topic>Oxidation-Reduction</topic><topic>oxygen</topic><topic>Oxygen - chemistry</topic><topic>Physical chemistry in biology</topic><topic>Ralstonia eutropha</topic><topic>Signal transduction</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, Oliver</creatorcontrib><creatorcontrib>Ludwig, Marcus</creatorcontrib><creatorcontrib>Schubert, Torsten</creatorcontrib><creatorcontrib>Bürstel, Ingmar</creatorcontrib><creatorcontrib>Ganskow, Stefanie</creatorcontrib><creatorcontrib>Goris, Tobias</creatorcontrib><creatorcontrib>Schwarze, Alexander</creatorcontrib><creatorcontrib>Friedrich, Bärbel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, Oliver</au><au>Ludwig, Marcus</au><au>Schubert, Torsten</au><au>Bürstel, Ingmar</au><au>Ganskow, Stefanie</au><au>Goris, Tobias</au><au>Schwarze, Alexander</au><au>Friedrich, Bärbel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha</atitle><jtitle>Chemphyschem</jtitle><addtitle>ChemPhysChem</addtitle><date>2010-04-26</date><risdate>2010</risdate><volume>11</volume><issue>6</issue><spage>1107</spage><epage>1119</epage><pages>1107-1119</pages><issn>1439-4235</issn><issn>1439-7641</issn><eissn>1439-7641</eissn><abstract>[NiFe]‐hydrogenases catalyze the oxidation of H2 to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni–Fe active site and several [Fe–S] clusters. H2 catalysis of most [NiFe]‐hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H2 even in the presence of O2. There is now compelling evidence that O2 affects hydrogenase on three levels: 1) H2 catalysis, 2) hydrogenase maturation, and 3) H2‐mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O2 tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane‐bound [NiFe]‐hydogenase, which currently represents the best‐characterized member of O2‐tolerant hydrogenases.
Oxygen‐tolerant hydrogenases: The inherent properties by which membrane‐bound [NiFe]‐hydrogenases of aerobic H2‐oxidizing microorganisms are able to catalyze H2 conversion in the presence of molecular oxygen are discussed.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20186906</pmid><doi>10.1002/cphc.200901002</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2010-04, Vol.11 (6), p.1107-1119 |
issn | 1439-4235 1439-7641 1439-7641 |
language | eng |
recordid | cdi_proquest_miscellaneous_733914153 |
source | Wiley |
subjects | Biocatalysis Biological and medical sciences Catalysis Catalytic Domain Cell physiology Chemistry Colloidal state and disperse state Cupriavidus necator - enzymology Exact sciences and technology Fundamental and applied biological sciences. Psychology General and physical chemistry hydrogen Hydrogen - chemistry Hydrogen - metabolism hydrogen technology Hydrogenase - metabolism hydrogenases Mechanisms. Catalysis. Electron transfer. Models Membranes metal-cofactor assembly Molecular and cellular biology Molecular biophysics Oxidation-Reduction oxygen Oxygen - chemistry Physical chemistry in biology Ralstonia eutropha Signal transduction Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | H2 Conversion in the Presence of O2 as Performed by the Membrane-Bound [NiFe]-Hydrogenase of Ralstonia eutropha |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=H2%20Conversion%20in%20the%20Presence%20of%20O2%20as%20Performed%20by%20the%20Membrane-Bound%20%5BNiFe%5D-Hydrogenase%20of%20Ralstonia%20eutropha&rft.jtitle=Chemphyschem&rft.au=Lenz,%20Oliver&rft.date=2010-04-26&rft.volume=11&rft.issue=6&rft.spage=1107&rft.epage=1119&rft.pages=1107-1119&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.200901002&rft_dat=%3Cproquest_pubme%3E1020837800%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i3752-983c9f4450b3c7aa6aa2a992a4eb738807ac6d7a662b02d0c7d432a6479ffb4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1020837800&rft_id=info:pmid/20186906&rfr_iscdi=true |