Loading…
Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections
We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (suscep...
Saved in:
Published in: | International journal for parasitology 2009-04, Vol.39 (5), p.607-614 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253 |
container_end_page | 614 |
container_issue | 5 |
container_start_page | 607 |
container_title | International journal for parasitology |
container_volume | 39 |
creator | Kemper, K.E. Elwin, R.L. Bishop, S.C. Goddard, M.E. Woolaston, R.R. |
description | We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P>0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term. |
doi_str_mv | 10.1016/j.ijpara.2008.08.013 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733922023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020751908004037</els_id><sourcerecordid>733922023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxy0EotvCGyDwhXLK4o98XpBQBRSpEgfaszVxJrteJXawHWBfiafE2azgVmkkj2Z-M2PP34S84mzLGS_fH7bmMIGHrWCs3i7G5ROy4XXVZMktnpINY4JlVcGbC3IZwoExXsg8f04ueMNElZIb8ucWcHRW7-dAtbPR-Zg8sB2990bvXYje2d1xOKWHufWmd340gXamo9ZFCh1MkUZHh8RlEf1I8ffkwuxxiYY94kTjHiL9hSm0Q4vRaBiGI_UYTIhgI3WehjlonKJph1OdxRGi65Aa26OOxtnwgjzrYQj48nxekYfPn-5vbrO7b1--3ny8y3SelzErmq7ksi5Zjdi2Vc-gLoVsq0JiLgELqHRZNdhI6LHIseKoe8k4r0vechCFvCLv1r6Tdz9mDFGl92ocBrDo5qAqKRshmJCJvH6UFCwXTPIFzFdQexeCx15N3ozgj4oztaipDmpVUy1qqsVOZa_P_ed2xO5_0Vm-BLw9AxDSTnsPVpvwjxNc1I2QC_dm5XpwCnY-MQ_fRRqRfkRTSNEk4sNKYNrsT4NeBW3QauyMT_tXnTOP3_UvRIvNSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20420313</pqid></control><display><type>article</type><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><source>ScienceDirect Freedom Collection</source><creator>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</creator><creatorcontrib>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</creatorcontrib><description>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P>0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</description><identifier>ISSN: 0020-7519</identifier><identifier>EISSN: 1879-0135</identifier><identifier>DOI: 10.1016/j.ijpara.2008.08.013</identifier><identifier>PMID: 19027020</identifier><identifier>CODEN: IJPYBT</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>adaptation ; Adaptation, Physiological - genetics ; Adaptation, Physiological - immunology ; Age Factors ; Animals ; Biological and medical sciences ; Breeding - methods ; Coevolution ; disease resistance ; Faecal worm egg count ; fecal egg count ; Feces - parasitology ; Female ; Fundamental and applied biological sciences. Psychology ; gastrointestinal nematodes ; Genetic Predisposition to Disease ; Genetic resistance ; Genotype ; Haemonchiasis - genetics ; Haemonchiasis - immunology ; Haemonchiasis - parasitology ; Haemonchiasis - veterinary ; Haemonchus - classification ; Haemonchus - pathogenicity ; Haemonchus - physiology ; Haemonchus contortus ; hematocrit ; Host-Parasite Interactions - genetics ; Host-Parasite Interactions - immunology ; host-parasite relationships ; Host–parasite interaction ; Immunity, Innate - genetics ; Life cycle. Host-agent relationship. Pathogenesis ; Male ; Mammalia ; Nematoda ; nematode infections ; Parasite Egg Count - veterinary ; Protozoa ; Random Allocation ; selection response ; Serial passage ; Sheep ; Sheep Diseases - genetics ; Sheep Diseases - immunology ; Sheep, Domestic - genetics ; Sheep, Domestic - immunology ; Species Specificity ; Trichostrongylosis - genetics ; Trichostrongylosis - immunology ; Trichostrongylosis - parasitology ; Trichostrongylosis - veterinary ; Trichostrongylus ; Trichostrongylus - classification ; Trichostrongylus - pathogenicity ; Trichostrongylus - physiology ; Trichostrongylus colubriformis ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>International journal for parasitology, 2009-04, Vol.39 (5), p.607-614</ispartof><rights>2008 Australian Society for Parasitology Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</citedby><cites>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21289230$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19027020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemper, K.E.</creatorcontrib><creatorcontrib>Elwin, R.L.</creatorcontrib><creatorcontrib>Bishop, S.C.</creatorcontrib><creatorcontrib>Goddard, M.E.</creatorcontrib><creatorcontrib>Woolaston, R.R.</creatorcontrib><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><title>International journal for parasitology</title><addtitle>Int J Parasitol</addtitle><description>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P>0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</description><subject>adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Adaptation, Physiological - immunology</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Breeding - methods</subject><subject>Coevolution</subject><subject>disease resistance</subject><subject>Faecal worm egg count</subject><subject>fecal egg count</subject><subject>Feces - parasitology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gastrointestinal nematodes</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic resistance</subject><subject>Genotype</subject><subject>Haemonchiasis - genetics</subject><subject>Haemonchiasis - immunology</subject><subject>Haemonchiasis - parasitology</subject><subject>Haemonchiasis - veterinary</subject><subject>Haemonchus - classification</subject><subject>Haemonchus - pathogenicity</subject><subject>Haemonchus - physiology</subject><subject>Haemonchus contortus</subject><subject>hematocrit</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Host-Parasite Interactions - immunology</subject><subject>host-parasite relationships</subject><subject>Host–parasite interaction</subject><subject>Immunity, Innate - genetics</subject><subject>Life cycle. Host-agent relationship. Pathogenesis</subject><subject>Male</subject><subject>Mammalia</subject><subject>Nematoda</subject><subject>nematode infections</subject><subject>Parasite Egg Count - veterinary</subject><subject>Protozoa</subject><subject>Random Allocation</subject><subject>selection response</subject><subject>Serial passage</subject><subject>Sheep</subject><subject>Sheep Diseases - genetics</subject><subject>Sheep Diseases - immunology</subject><subject>Sheep, Domestic - genetics</subject><subject>Sheep, Domestic - immunology</subject><subject>Species Specificity</subject><subject>Trichostrongylosis - genetics</subject><subject>Trichostrongylosis - immunology</subject><subject>Trichostrongylosis - parasitology</subject><subject>Trichostrongylosis - veterinary</subject><subject>Trichostrongylus</subject><subject>Trichostrongylus - classification</subject><subject>Trichostrongylus - pathogenicity</subject><subject>Trichostrongylus - physiology</subject><subject>Trichostrongylus colubriformis</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0020-7519</issn><issn>1879-0135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9ks1u1DAQxy0EotvCGyDwhXLK4o98XpBQBRSpEgfaszVxJrteJXawHWBfiafE2azgVmkkj2Z-M2PP34S84mzLGS_fH7bmMIGHrWCs3i7G5ROy4XXVZMktnpINY4JlVcGbC3IZwoExXsg8f04ueMNElZIb8ucWcHRW7-dAtbPR-Zg8sB2990bvXYje2d1xOKWHufWmd340gXamo9ZFCh1MkUZHh8RlEf1I8ffkwuxxiYY94kTjHiL9hSm0Q4vRaBiGI_UYTIhgI3WehjlonKJph1OdxRGi65Aa26OOxtnwgjzrYQj48nxekYfPn-5vbrO7b1--3ny8y3SelzErmq7ksi5Zjdi2Vc-gLoVsq0JiLgELqHRZNdhI6LHIseKoe8k4r0vechCFvCLv1r6Tdz9mDFGl92ocBrDo5qAqKRshmJCJvH6UFCwXTPIFzFdQexeCx15N3ozgj4oztaipDmpVUy1qqsVOZa_P_ed2xO5_0Vm-BLw9AxDSTnsPVpvwjxNc1I2QC_dm5XpwCnY-MQ_fRRqRfkRTSNEk4sNKYNrsT4NeBW3QauyMT_tXnTOP3_UvRIvNSw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kemper, K.E.</creator><creator>Elwin, R.L.</creator><creator>Bishop, S.C.</creator><creator>Goddard, M.E.</creator><creator>Woolaston, R.R.</creator><general>Elsevier Ltd</general><general>[Oxford; New York]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><author>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Adaptation, Physiological - immunology</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Breeding - methods</topic><topic>Coevolution</topic><topic>disease resistance</topic><topic>Faecal worm egg count</topic><topic>fecal egg count</topic><topic>Feces - parasitology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gastrointestinal nematodes</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic resistance</topic><topic>Genotype</topic><topic>Haemonchiasis - genetics</topic><topic>Haemonchiasis - immunology</topic><topic>Haemonchiasis - parasitology</topic><topic>Haemonchiasis - veterinary</topic><topic>Haemonchus - classification</topic><topic>Haemonchus - pathogenicity</topic><topic>Haemonchus - physiology</topic><topic>Haemonchus contortus</topic><topic>hematocrit</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Host-Parasite Interactions - immunology</topic><topic>host-parasite relationships</topic><topic>Host–parasite interaction</topic><topic>Immunity, Innate - genetics</topic><topic>Life cycle. Host-agent relationship. Pathogenesis</topic><topic>Male</topic><topic>Mammalia</topic><topic>Nematoda</topic><topic>nematode infections</topic><topic>Parasite Egg Count - veterinary</topic><topic>Protozoa</topic><topic>Random Allocation</topic><topic>selection response</topic><topic>Serial passage</topic><topic>Sheep</topic><topic>Sheep Diseases - genetics</topic><topic>Sheep Diseases - immunology</topic><topic>Sheep, Domestic - genetics</topic><topic>Sheep, Domestic - immunology</topic><topic>Species Specificity</topic><topic>Trichostrongylosis - genetics</topic><topic>Trichostrongylosis - immunology</topic><topic>Trichostrongylosis - parasitology</topic><topic>Trichostrongylosis - veterinary</topic><topic>Trichostrongylus</topic><topic>Trichostrongylus - classification</topic><topic>Trichostrongylus - pathogenicity</topic><topic>Trichostrongylus - physiology</topic><topic>Trichostrongylus colubriformis</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemper, K.E.</creatorcontrib><creatorcontrib>Elwin, R.L.</creatorcontrib><creatorcontrib>Bishop, S.C.</creatorcontrib><creatorcontrib>Goddard, M.E.</creatorcontrib><creatorcontrib>Woolaston, R.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemper, K.E.</au><au>Elwin, R.L.</au><au>Bishop, S.C.</au><au>Goddard, M.E.</au><au>Woolaston, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</atitle><jtitle>International journal for parasitology</jtitle><addtitle>Int J Parasitol</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>5</issue><spage>607</spage><epage>614</epage><pages>607-614</pages><issn>0020-7519</issn><eissn>1879-0135</eissn><coden>IJPYBT</coden><abstract>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P>0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19027020</pmid><doi>10.1016/j.ijpara.2008.08.013</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7519 |
ispartof | International journal for parasitology, 2009-04, Vol.39 (5), p.607-614 |
issn | 0020-7519 1879-0135 |
language | eng |
recordid | cdi_proquest_miscellaneous_733922023 |
source | ScienceDirect Freedom Collection |
subjects | adaptation Adaptation, Physiological - genetics Adaptation, Physiological - immunology Age Factors Animals Biological and medical sciences Breeding - methods Coevolution disease resistance Faecal worm egg count fecal egg count Feces - parasitology Female Fundamental and applied biological sciences. Psychology gastrointestinal nematodes Genetic Predisposition to Disease Genetic resistance Genotype Haemonchiasis - genetics Haemonchiasis - immunology Haemonchiasis - parasitology Haemonchiasis - veterinary Haemonchus - classification Haemonchus - pathogenicity Haemonchus - physiology Haemonchus contortus hematocrit Host-Parasite Interactions - genetics Host-Parasite Interactions - immunology host-parasite relationships Host–parasite interaction Immunity, Innate - genetics Life cycle. Host-agent relationship. Pathogenesis Male Mammalia Nematoda nematode infections Parasite Egg Count - veterinary Protozoa Random Allocation selection response Serial passage Sheep Sheep Diseases - genetics Sheep Diseases - immunology Sheep, Domestic - genetics Sheep, Domestic - immunology Species Specificity Trichostrongylosis - genetics Trichostrongylosis - immunology Trichostrongylosis - parasitology Trichostrongylosis - veterinary Trichostrongylus Trichostrongylus - classification Trichostrongylus - pathogenicity Trichostrongylus - physiology Trichostrongylus colubriformis Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution |
title | Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haemonchus%20contortus%20and%20Trichostrongylus%20colubriformis%20did%20not%20adapt%20to%20long-term%20exposure%20to%20sheep%20that%20were%20genetically%20resistant%20or%20susceptible%20to%20nematode%20infections&rft.jtitle=International%20journal%20for%20parasitology&rft.au=Kemper,%20K.E.&rft.date=2009-04-01&rft.volume=39&rft.issue=5&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.issn=0020-7519&rft.eissn=1879-0135&rft.coden=IJPYBT&rft_id=info:doi/10.1016/j.ijpara.2008.08.013&rft_dat=%3Cproquest_cross%3E733922023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20420313&rft_id=info:pmid/19027020&rfr_iscdi=true |