Loading…

Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections

We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (suscep...

Full description

Saved in:
Bibliographic Details
Published in:International journal for parasitology 2009-04, Vol.39 (5), p.607-614
Main Authors: Kemper, K.E., Elwin, R.L., Bishop, S.C., Goddard, M.E., Woolaston, R.R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253
cites cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253
container_end_page 614
container_issue 5
container_start_page 607
container_title International journal for parasitology
container_volume 39
creator Kemper, K.E.
Elwin, R.L.
Bishop, S.C.
Goddard, M.E.
Woolaston, R.R.
description We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P>0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.
doi_str_mv 10.1016/j.ijpara.2008.08.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733922023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020751908004037</els_id><sourcerecordid>733922023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxy0EotvCGyDwhXLK4o98XpBQBRSpEgfaszVxJrteJXawHWBfiafE2azgVmkkj2Z-M2PP34S84mzLGS_fH7bmMIGHrWCs3i7G5ROy4XXVZMktnpINY4JlVcGbC3IZwoExXsg8f04ueMNElZIb8ucWcHRW7-dAtbPR-Zg8sB2990bvXYje2d1xOKWHufWmd340gXamo9ZFCh1MkUZHh8RlEf1I8ffkwuxxiYY94kTjHiL9hSm0Q4vRaBiGI_UYTIhgI3WehjlonKJph1OdxRGi65Aa26OOxtnwgjzrYQj48nxekYfPn-5vbrO7b1--3ny8y3SelzErmq7ksi5Zjdi2Vc-gLoVsq0JiLgELqHRZNdhI6LHIseKoe8k4r0vechCFvCLv1r6Tdz9mDFGl92ocBrDo5qAqKRshmJCJvH6UFCwXTPIFzFdQexeCx15N3ozgj4oztaipDmpVUy1qqsVOZa_P_ed2xO5_0Vm-BLw9AxDSTnsPVpvwjxNc1I2QC_dm5XpwCnY-MQ_fRRqRfkRTSNEk4sNKYNrsT4NeBW3QauyMT_tXnTOP3_UvRIvNSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20420313</pqid></control><display><type>article</type><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><source>ScienceDirect Freedom Collection</source><creator>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</creator><creatorcontrib>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</creatorcontrib><description>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P&gt;0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</description><identifier>ISSN: 0020-7519</identifier><identifier>EISSN: 1879-0135</identifier><identifier>DOI: 10.1016/j.ijpara.2008.08.013</identifier><identifier>PMID: 19027020</identifier><identifier>CODEN: IJPYBT</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>adaptation ; Adaptation, Physiological - genetics ; Adaptation, Physiological - immunology ; Age Factors ; Animals ; Biological and medical sciences ; Breeding - methods ; Coevolution ; disease resistance ; Faecal worm egg count ; fecal egg count ; Feces - parasitology ; Female ; Fundamental and applied biological sciences. Psychology ; gastrointestinal nematodes ; Genetic Predisposition to Disease ; Genetic resistance ; Genotype ; Haemonchiasis - genetics ; Haemonchiasis - immunology ; Haemonchiasis - parasitology ; Haemonchiasis - veterinary ; Haemonchus - classification ; Haemonchus - pathogenicity ; Haemonchus - physiology ; Haemonchus contortus ; hematocrit ; Host-Parasite Interactions - genetics ; Host-Parasite Interactions - immunology ; host-parasite relationships ; Host–parasite interaction ; Immunity, Innate - genetics ; Life cycle. Host-agent relationship. Pathogenesis ; Male ; Mammalia ; Nematoda ; nematode infections ; Parasite Egg Count - veterinary ; Protozoa ; Random Allocation ; selection response ; Serial passage ; Sheep ; Sheep Diseases - genetics ; Sheep Diseases - immunology ; Sheep, Domestic - genetics ; Sheep, Domestic - immunology ; Species Specificity ; Trichostrongylosis - genetics ; Trichostrongylosis - immunology ; Trichostrongylosis - parasitology ; Trichostrongylosis - veterinary ; Trichostrongylus ; Trichostrongylus - classification ; Trichostrongylus - pathogenicity ; Trichostrongylus - physiology ; Trichostrongylus colubriformis ; Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><ispartof>International journal for parasitology, 2009-04, Vol.39 (5), p.607-614</ispartof><rights>2008 Australian Society for Parasitology Inc.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</citedby><cites>FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21289230$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19027020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kemper, K.E.</creatorcontrib><creatorcontrib>Elwin, R.L.</creatorcontrib><creatorcontrib>Bishop, S.C.</creatorcontrib><creatorcontrib>Goddard, M.E.</creatorcontrib><creatorcontrib>Woolaston, R.R.</creatorcontrib><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><title>International journal for parasitology</title><addtitle>Int J Parasitol</addtitle><description>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P&gt;0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</description><subject>adaptation</subject><subject>Adaptation, Physiological - genetics</subject><subject>Adaptation, Physiological - immunology</subject><subject>Age Factors</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Breeding - methods</subject><subject>Coevolution</subject><subject>disease resistance</subject><subject>Faecal worm egg count</subject><subject>fecal egg count</subject><subject>Feces - parasitology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gastrointestinal nematodes</subject><subject>Genetic Predisposition to Disease</subject><subject>Genetic resistance</subject><subject>Genotype</subject><subject>Haemonchiasis - genetics</subject><subject>Haemonchiasis - immunology</subject><subject>Haemonchiasis - parasitology</subject><subject>Haemonchiasis - veterinary</subject><subject>Haemonchus - classification</subject><subject>Haemonchus - pathogenicity</subject><subject>Haemonchus - physiology</subject><subject>Haemonchus contortus</subject><subject>hematocrit</subject><subject>Host-Parasite Interactions - genetics</subject><subject>Host-Parasite Interactions - immunology</subject><subject>host-parasite relationships</subject><subject>Host–parasite interaction</subject><subject>Immunity, Innate - genetics</subject><subject>Life cycle. Host-agent relationship. Pathogenesis</subject><subject>Male</subject><subject>Mammalia</subject><subject>Nematoda</subject><subject>nematode infections</subject><subject>Parasite Egg Count - veterinary</subject><subject>Protozoa</subject><subject>Random Allocation</subject><subject>selection response</subject><subject>Serial passage</subject><subject>Sheep</subject><subject>Sheep Diseases - genetics</subject><subject>Sheep Diseases - immunology</subject><subject>Sheep, Domestic - genetics</subject><subject>Sheep, Domestic - immunology</subject><subject>Species Specificity</subject><subject>Trichostrongylosis - genetics</subject><subject>Trichostrongylosis - immunology</subject><subject>Trichostrongylosis - parasitology</subject><subject>Trichostrongylosis - veterinary</subject><subject>Trichostrongylus</subject><subject>Trichostrongylus - classification</subject><subject>Trichostrongylus - pathogenicity</subject><subject>Trichostrongylus - physiology</subject><subject>Trichostrongylus colubriformis</subject><subject>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</subject><issn>0020-7519</issn><issn>1879-0135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9ks1u1DAQxy0EotvCGyDwhXLK4o98XpBQBRSpEgfaszVxJrteJXawHWBfiafE2azgVmkkj2Z-M2PP34S84mzLGS_fH7bmMIGHrWCs3i7G5ROy4XXVZMktnpINY4JlVcGbC3IZwoExXsg8f04ueMNElZIb8ucWcHRW7-dAtbPR-Zg8sB2990bvXYje2d1xOKWHufWmd340gXamo9ZFCh1MkUZHh8RlEf1I8ffkwuxxiYY94kTjHiL9hSm0Q4vRaBiGI_UYTIhgI3WehjlonKJph1OdxRGi65Aa26OOxtnwgjzrYQj48nxekYfPn-5vbrO7b1--3ny8y3SelzErmq7ksi5Zjdi2Vc-gLoVsq0JiLgELqHRZNdhI6LHIseKoe8k4r0vechCFvCLv1r6Tdz9mDFGl92ocBrDo5qAqKRshmJCJvH6UFCwXTPIFzFdQexeCx15N3ozgj4oztaipDmpVUy1qqsVOZa_P_ed2xO5_0Vm-BLw9AxDSTnsPVpvwjxNc1I2QC_dm5XpwCnY-MQ_fRRqRfkRTSNEk4sNKYNrsT4NeBW3QauyMT_tXnTOP3_UvRIvNSw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kemper, K.E.</creator><creator>Elwin, R.L.</creator><creator>Bishop, S.C.</creator><creator>Goddard, M.E.</creator><creator>Woolaston, R.R.</creator><general>Elsevier Ltd</general><general>[Oxford; New York]: Elsevier Science</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20090401</creationdate><title>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</title><author>Kemper, K.E. ; Elwin, R.L. ; Bishop, S.C. ; Goddard, M.E. ; Woolaston, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>adaptation</topic><topic>Adaptation, Physiological - genetics</topic><topic>Adaptation, Physiological - immunology</topic><topic>Age Factors</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Breeding - methods</topic><topic>Coevolution</topic><topic>disease resistance</topic><topic>Faecal worm egg count</topic><topic>fecal egg count</topic><topic>Feces - parasitology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gastrointestinal nematodes</topic><topic>Genetic Predisposition to Disease</topic><topic>Genetic resistance</topic><topic>Genotype</topic><topic>Haemonchiasis - genetics</topic><topic>Haemonchiasis - immunology</topic><topic>Haemonchiasis - parasitology</topic><topic>Haemonchiasis - veterinary</topic><topic>Haemonchus - classification</topic><topic>Haemonchus - pathogenicity</topic><topic>Haemonchus - physiology</topic><topic>Haemonchus contortus</topic><topic>hematocrit</topic><topic>Host-Parasite Interactions - genetics</topic><topic>Host-Parasite Interactions - immunology</topic><topic>host-parasite relationships</topic><topic>Host–parasite interaction</topic><topic>Immunity, Innate - genetics</topic><topic>Life cycle. Host-agent relationship. Pathogenesis</topic><topic>Male</topic><topic>Mammalia</topic><topic>Nematoda</topic><topic>nematode infections</topic><topic>Parasite Egg Count - veterinary</topic><topic>Protozoa</topic><topic>Random Allocation</topic><topic>selection response</topic><topic>Serial passage</topic><topic>Sheep</topic><topic>Sheep Diseases - genetics</topic><topic>Sheep Diseases - immunology</topic><topic>Sheep, Domestic - genetics</topic><topic>Sheep, Domestic - immunology</topic><topic>Species Specificity</topic><topic>Trichostrongylosis - genetics</topic><topic>Trichostrongylosis - immunology</topic><topic>Trichostrongylosis - parasitology</topic><topic>Trichostrongylosis - veterinary</topic><topic>Trichostrongylus</topic><topic>Trichostrongylus - classification</topic><topic>Trichostrongylus - pathogenicity</topic><topic>Trichostrongylus - physiology</topic><topic>Trichostrongylus colubriformis</topic><topic>Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kemper, K.E.</creatorcontrib><creatorcontrib>Elwin, R.L.</creatorcontrib><creatorcontrib>Bishop, S.C.</creatorcontrib><creatorcontrib>Goddard, M.E.</creatorcontrib><creatorcontrib>Woolaston, R.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>International journal for parasitology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kemper, K.E.</au><au>Elwin, R.L.</au><au>Bishop, S.C.</au><au>Goddard, M.E.</au><au>Woolaston, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections</atitle><jtitle>International journal for parasitology</jtitle><addtitle>Int J Parasitol</addtitle><date>2009-04-01</date><risdate>2009</risdate><volume>39</volume><issue>5</issue><spage>607</spage><epage>614</epage><pages>607-614</pages><issn>0020-7519</issn><eissn>1879-0135</eissn><coden>IJPYBT</coden><abstract>We tested the hypothesis that Haemonchus contortus and Trichostrongylus colubriformis would adapt to long-term exposure to sheep that were either genetically resistant or susceptible to H. contortus. Sheep genotypes were from lines with 10 years prior selection for low (resistant, R) or high (susceptible, S) faecal worm egg count (WEC) following H. contortus infection. Long-term exposure of H. contortus and T.colubriformis to R or S genotypes was achieved using serial passage for up to 30 nematode generations. Thus, we generated four nematode strains; one strain of each species solely exposed to R sheep and one strain of each species solely exposed to S sheep. Considerable host genotype differences in mean WEC during serial passage confirmed adequate nematode selection pressure for both H. contortus (R 4900 eggs per gram (epg), S 19,900 epg) and T. colubriformis (R 5300 epg, S 13,500 epg). Adaptation of nematode strain to host genotype was tested using seven cross-classified tests for H. contortus, and two cross-classified and one outbred genotype test for T. colubriformis. In the cross-classified design, where each strain infects groups of R, S or randomly bred control sheep, parasite adaptation would be indicated by a significant host genotype by nematode strain interaction for traits indicating parasite reproductive success; specifically WEC and, for H. contortus strains, packed cell volume. We found no significant evidence of parasite adaptation to host genotype (P&gt;0.05) for either the H. contortus or T. colubriformis strains. Therefore, we argue that nematodes will not adapt quickly to sheep bred for nematode resistance, where selection is based on low WEC, although selecting sheep using a subset of immune functions may increase adaptation risk. Our results support the hypothesis that nematode resistance is determined by many genes each with relatively small effect. In conclusion, selection of sheep for nematode resistance using WEC should be sustainable in the medium to long-term.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19027020</pmid><doi>10.1016/j.ijpara.2008.08.013</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0020-7519
ispartof International journal for parasitology, 2009-04, Vol.39 (5), p.607-614
issn 0020-7519
1879-0135
language eng
recordid cdi_proquest_miscellaneous_733922023
source ScienceDirect Freedom Collection
subjects adaptation
Adaptation, Physiological - genetics
Adaptation, Physiological - immunology
Age Factors
Animals
Biological and medical sciences
Breeding - methods
Coevolution
disease resistance
Faecal worm egg count
fecal egg count
Feces - parasitology
Female
Fundamental and applied biological sciences. Psychology
gastrointestinal nematodes
Genetic Predisposition to Disease
Genetic resistance
Genotype
Haemonchiasis - genetics
Haemonchiasis - immunology
Haemonchiasis - parasitology
Haemonchiasis - veterinary
Haemonchus - classification
Haemonchus - pathogenicity
Haemonchus - physiology
Haemonchus contortus
hematocrit
Host-Parasite Interactions - genetics
Host-Parasite Interactions - immunology
host-parasite relationships
Host–parasite interaction
Immunity, Innate - genetics
Life cycle. Host-agent relationship. Pathogenesis
Male
Mammalia
Nematoda
nematode infections
Parasite Egg Count - veterinary
Protozoa
Random Allocation
selection response
Serial passage
Sheep
Sheep Diseases - genetics
Sheep Diseases - immunology
Sheep, Domestic - genetics
Sheep, Domestic - immunology
Species Specificity
Trichostrongylosis - genetics
Trichostrongylosis - immunology
Trichostrongylosis - parasitology
Trichostrongylosis - veterinary
Trichostrongylus
Trichostrongylus - classification
Trichostrongylus - pathogenicity
Trichostrongylus - physiology
Trichostrongylus colubriformis
Vertebrates: general zoology, morphology, phylogeny, systematics, cytogenetics, geographical distribution
title Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T13%3A51%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Haemonchus%20contortus%20and%20Trichostrongylus%20colubriformis%20did%20not%20adapt%20to%20long-term%20exposure%20to%20sheep%20that%20were%20genetically%20resistant%20or%20susceptible%20to%20nematode%20infections&rft.jtitle=International%20journal%20for%20parasitology&rft.au=Kemper,%20K.E.&rft.date=2009-04-01&rft.volume=39&rft.issue=5&rft.spage=607&rft.epage=614&rft.pages=607-614&rft.issn=0020-7519&rft.eissn=1879-0135&rft.coden=IJPYBT&rft_id=info:doi/10.1016/j.ijpara.2008.08.013&rft_dat=%3Cproquest_cross%3E733922023%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-59d6138608eebb7f0a8623b753e43ae5a7c679e93afe54e71ecf3011861b1a253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20420313&rft_id=info:pmid/19027020&rfr_iscdi=true