Loading…

Controlled release of chlorhexidine from amorphous microporous silica

A new system for the controlled release of the antiseptic chlorhexidine is presented. Amorphous microporous silica (AMS) excipient material was synthesized via an acid catalyzed sol-gel method and shaped as powder or coating. Chlorhexidine diacetate was introduced into the pores of the AMS silica vi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of controlled release 2010-02, Vol.142 (1), p.47-52
Main Authors: VERRAEDT, E, PENDELA, M, ADAMS, E, HOOGMARTENS, J, MARTENS, J. A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new system for the controlled release of the antiseptic chlorhexidine is presented. Amorphous microporous silica (AMS) excipient material was synthesized via an acid catalyzed sol-gel method and shaped as powder or coating. Chlorhexidine diacetate was introduced into the pores of the AMS silica via the incipient wetness impregnation method. This silica reservoir maintained a slow release of chlorhexidine over more than 7days. Chlorhexidine release was controlled by configurational diffusion in the AMS pores having free diameters of less than 1nm. The release of chlorhexidine was fine tuned by adapting particle size and pore diameter. Controlled release of chlorhexidine from an AMS coating on silicon wafer was demonstrated.
ISSN:0168-3659
1873-4995
DOI:10.1016/j.jconrel.2009.09.022