Loading…
Treatment of intracerebral haemorrhage in rats with intraventricular transplantation of human amniotic epithelial cells
We explored the effects on brain oedema and neurological functional recovery after transplantation of hAECs (human amniotic epithelial cells) into the lateral ventricle of rats with ICH (intracerebral haemorrhage). hAECs were isolated from human term placenta and seeded for primary culture. We deliv...
Saved in:
Published in: | Cell biology international 2010-06, Vol.34 (6), p.573-577 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explored the effects on brain oedema and neurological functional recovery after transplantation of hAECs (human amniotic epithelial cells) into the lateral ventricle of rats with ICH (intracerebral haemorrhage). hAECs were isolated from human term placenta and seeded for primary culture. We delivered hAECs labelled with Hoechst33258 and transfected with EGFP (enhanced green fluorescent protein) gene using lentiviral vectors into ICH rat models. The behaviour of the animals and brain oedema were evaluated after 28 days, and brain sections were made for morphological and immunohistochemical analyses with fluorescence microscopy. Our results were as follows. Transplanted hAECs were observed along the lateral wall and survived for at least 4 weeks. Some of the cells were stained with human specific antibody to vimentin and nestin. Around the injury site, activated microglia stained with OX42 were reduced. The water content of ICH rats decreased in the treatment group. The behaviour test scores were improved in the treatment group compared with those in the control groups. In conclusion, hAECs cannot only survive in the lateral ventricle of ICH rats after transplantation, but also express vimentin and nestin. hAEC transplantation reduced brain oedema and improved the motor deficits of ICH rats. |
---|---|
ISSN: | 1065-6995 1095-8355 |
DOI: | 10.1042/CBI20090248 |