Loading…

Novel Electron Tomographic Methods to Study the Morphology of Keratin Filament Networks

The three-dimensional (3D) keratin filament network of pancreatic carcinoma cells was investigated with different electron microscopical approaches. Semithin sections of high-pressure frozen and freeze substituted cells were analyzed with scanning transmission electron microscope (STEM) tomography....

Full description

Saved in:
Bibliographic Details
Published in:Microscopy and microanalysis 2010-08, Vol.16 (4), p.462-471
Main Authors: Sailer, Michaela, Höhn, Katharina, Lück, Sebastian, Schmidt, Volker, Beil, Michael, Walther, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The three-dimensional (3D) keratin filament network of pancreatic carcinoma cells was investigated with different electron microscopical approaches. Semithin sections of high-pressure frozen and freeze substituted cells were analyzed with scanning transmission electron microscope (STEM) tomography. Preservation of subcellular structures was excellent, and keratin filaments could be observed; however, it was impossible to three-dimensionally track the individual filaments. To obtain a better signal-to-noise ratio in transmission mode, we observed ultrathin sections of high-pressure frozen and freeze substituted samples with low-voltage (30 kV) STEM. Contrast was improved compared to 300 kV, and individual filaments could be observed. The filament network of samples prepared by detergent extraction was imaged by high-resolution scanning electron microscopy (SEM) with very good signal-to-noise ratio using the secondary electron signal and the 3D structure could be elucidated by SEM tomography. In freeze-dried samples it was possible to discern between keratin filaments and actin filaments because the helical arrangement of actin subunits in the F-actin could be resolved. When comparing the network structures of the differently prepared samples, we found no obvious differences in filament length and branching, indicating that the intermediate filament network is less susceptible to preparation artifacts than the actin network.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927610093657