Loading…

Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex

Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently re...

Full description

Saved in:
Bibliographic Details
Published in:Developmental neurobiology (Hoboken, N.J.) N.J.), 2010-09, Vol.70 (10), p.679-692
Main Authors: Conhaim, Jay, Cedarbaum, Emily R., Barahimi, Mitra, Moore, Jennifer G., Becker, Matthew I., Gleiss, Helge, Kohl, Christine, Moody, William J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3
cites cdi_FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3
container_end_page 692
container_issue 10
container_start_page 679
container_title Developmental neurobiology (Hoboken, N.J.)
container_volume 70
creator Conhaim, Jay
Cedarbaum, Emily R.
Barahimi, Mitra
Moore, Jennifer G.
Becker, Matthew I.
Gleiss, Helge
Kohl, Christine
Moody, William J.
description Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010
doi_str_mv 10.1002/dneu.20797
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733989836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1017972292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3</originalsourceid><addsrcrecordid>eNp9kctKxDAUhoMo3jc-gGSnCKNJOs1lqeMVRDcK7kqano6RtqlJZnTewkc2Y0eXrs6Fj-9w-BE6oOSUEsLOqg5mp4wIJdbQNlUZG8kxf1n_63O6hXZCeCMkzxgnm2iLkZxwKtk2-rqwrat0gwP0MRXdVdg4H61JQ_R2OgVvu-lq3_YNfOLeu15PdbSuw72OEXwXsKtx6F0XdQduFvCHnsPPUpto5zYusO1wfAVcwRwa1y-dbQIBG_BQ-nRteRY-99BGrZsA-6u6i56vr54mt6P7x5u7yfn9yGScipEBWY0F1YyQStWs5FJyJlimak14WbKSjkESpbihWtBxznJBhTK6ZqKUdW2yXXQ0eNM37zMIsWhtMNA0wwOFyDIllcx4Io__JSlJZsGYYgk9GVDjXQge6qL3ttV-kaBimVWxzKr4ySrBhyvvrGyh-kN_w0kAHYAP28DiH1Vx-XD1PEi_AcY9ofs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1017972292</pqid></control><display><type>article</type><title>Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Conhaim, Jay ; Cedarbaum, Emily R. ; Barahimi, Mitra ; Moore, Jennifer G. ; Becker, Matthew I. ; Gleiss, Helge ; Kohl, Christine ; Moody, William J.</creator><creatorcontrib>Conhaim, Jay ; Cedarbaum, Emily R. ; Barahimi, Mitra ; Moore, Jennifer G. ; Becker, Matthew I. ; Gleiss, Helge ; Kohl, Christine ; Moody, William J.</creatorcontrib><description>Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010</description><identifier>ISSN: 1932-8451</identifier><identifier>ISSN: 1932-846X</identifier><identifier>EISSN: 1932-846X</identifier><identifier>DOI: 10.1002/dneu.20797</identifier><identifier>PMID: 20506182</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors ; Animals ; Biological Clocks - drug effects ; Biological Clocks - physiology ; Boundaries ; Brain ; Calcium imaging ; Calcium Signaling - physiology ; Calcium signalling ; Central nervous system ; Cerebral Cortex - embryology ; Cerebral Cortex - physiology ; Cortex ; development ; Developmental stages ; Evoked Potentials - drug effects ; Evoked Potentials - physiology ; Female ; Functional Laterality - physiology ; gamma -Aminobutyric acid A receptors ; Mice ; Neonates ; Nervous system ; Neural Pathways - embryology ; Neural Pathways - physiology ; Neurons - drug effects ; Neurons - physiology ; Organ Culture Techniques ; pacemaker ; Pacemakers ; picrotoxin ; Septal Nuclei - embryology ; Septal Nuclei - physiology ; septal nucleus ; Septum ; spontaneous activity ; Voltage-Sensitive Dye Imaging - methods</subject><ispartof>Developmental neurobiology (Hoboken, N.J.), 2010-09, Vol.70 (10), p.679-692</ispartof><rights>Copyright © 2010 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3</citedby><cites>FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20506182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Conhaim, Jay</creatorcontrib><creatorcontrib>Cedarbaum, Emily R.</creatorcontrib><creatorcontrib>Barahimi, Mitra</creatorcontrib><creatorcontrib>Moore, Jennifer G.</creatorcontrib><creatorcontrib>Becker, Matthew I.</creatorcontrib><creatorcontrib>Gleiss, Helge</creatorcontrib><creatorcontrib>Kohl, Christine</creatorcontrib><creatorcontrib>Moody, William J.</creatorcontrib><title>Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex</title><title>Developmental neurobiology (Hoboken, N.J.)</title><addtitle>Dev Neurobiol</addtitle><description>Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010</description><subject>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><subject>Animals</subject><subject>Biological Clocks - drug effects</subject><subject>Biological Clocks - physiology</subject><subject>Boundaries</subject><subject>Brain</subject><subject>Calcium imaging</subject><subject>Calcium Signaling - physiology</subject><subject>Calcium signalling</subject><subject>Central nervous system</subject><subject>Cerebral Cortex - embryology</subject><subject>Cerebral Cortex - physiology</subject><subject>Cortex</subject><subject>development</subject><subject>Developmental stages</subject><subject>Evoked Potentials - drug effects</subject><subject>Evoked Potentials - physiology</subject><subject>Female</subject><subject>Functional Laterality - physiology</subject><subject>gamma -Aminobutyric acid A receptors</subject><subject>Mice</subject><subject>Neonates</subject><subject>Nervous system</subject><subject>Neural Pathways - embryology</subject><subject>Neural Pathways - physiology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Organ Culture Techniques</subject><subject>pacemaker</subject><subject>Pacemakers</subject><subject>picrotoxin</subject><subject>Septal Nuclei - embryology</subject><subject>Septal Nuclei - physiology</subject><subject>septal nucleus</subject><subject>Septum</subject><subject>spontaneous activity</subject><subject>Voltage-Sensitive Dye Imaging - methods</subject><issn>1932-8451</issn><issn>1932-846X</issn><issn>1932-846X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhoMo3jc-gGSnCKNJOs1lqeMVRDcK7kqano6RtqlJZnTewkc2Y0eXrs6Fj-9w-BE6oOSUEsLOqg5mp4wIJdbQNlUZG8kxf1n_63O6hXZCeCMkzxgnm2iLkZxwKtk2-rqwrat0gwP0MRXdVdg4H61JQ_R2OgVvu-lq3_YNfOLeu15PdbSuw72OEXwXsKtx6F0XdQduFvCHnsPPUpto5zYusO1wfAVcwRwa1y-dbQIBG_BQ-nRteRY-99BGrZsA-6u6i56vr54mt6P7x5u7yfn9yGScipEBWY0F1YyQStWs5FJyJlimak14WbKSjkESpbihWtBxznJBhTK6ZqKUdW2yXXQ0eNM37zMIsWhtMNA0wwOFyDIllcx4Io__JSlJZsGYYgk9GVDjXQge6qL3ttV-kaBimVWxzKr4ySrBhyvvrGyh-kN_w0kAHYAP28DiH1Vx-XD1PEi_AcY9ofs</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Conhaim, Jay</creator><creator>Cedarbaum, Emily R.</creator><creator>Barahimi, Mitra</creator><creator>Moore, Jennifer G.</creator><creator>Becker, Matthew I.</creator><creator>Gleiss, Helge</creator><creator>Kohl, Christine</creator><creator>Moody, William J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>20100901</creationdate><title>Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex</title><author>Conhaim, Jay ; Cedarbaum, Emily R. ; Barahimi, Mitra ; Moore, Jennifer G. ; Becker, Matthew I. ; Gleiss, Helge ; Kohl, Christine ; Moody, William J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><topic>Animals</topic><topic>Biological Clocks - drug effects</topic><topic>Biological Clocks - physiology</topic><topic>Boundaries</topic><topic>Brain</topic><topic>Calcium imaging</topic><topic>Calcium Signaling - physiology</topic><topic>Calcium signalling</topic><topic>Central nervous system</topic><topic>Cerebral Cortex - embryology</topic><topic>Cerebral Cortex - physiology</topic><topic>Cortex</topic><topic>development</topic><topic>Developmental stages</topic><topic>Evoked Potentials - drug effects</topic><topic>Evoked Potentials - physiology</topic><topic>Female</topic><topic>Functional Laterality - physiology</topic><topic>gamma -Aminobutyric acid A receptors</topic><topic>Mice</topic><topic>Neonates</topic><topic>Nervous system</topic><topic>Neural Pathways - embryology</topic><topic>Neural Pathways - physiology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Organ Culture Techniques</topic><topic>pacemaker</topic><topic>Pacemakers</topic><topic>picrotoxin</topic><topic>Septal Nuclei - embryology</topic><topic>Septal Nuclei - physiology</topic><topic>septal nucleus</topic><topic>Septum</topic><topic>spontaneous activity</topic><topic>Voltage-Sensitive Dye Imaging - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Conhaim, Jay</creatorcontrib><creatorcontrib>Cedarbaum, Emily R.</creatorcontrib><creatorcontrib>Barahimi, Mitra</creatorcontrib><creatorcontrib>Moore, Jennifer G.</creatorcontrib><creatorcontrib>Becker, Matthew I.</creatorcontrib><creatorcontrib>Gleiss, Helge</creatorcontrib><creatorcontrib>Kohl, Christine</creatorcontrib><creatorcontrib>Moody, William J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Developmental neurobiology (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Conhaim, Jay</au><au>Cedarbaum, Emily R.</au><au>Barahimi, Mitra</au><au>Moore, Jennifer G.</au><au>Becker, Matthew I.</au><au>Gleiss, Helge</au><au>Kohl, Christine</au><au>Moody, William J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex</atitle><jtitle>Developmental neurobiology (Hoboken, N.J.)</jtitle><addtitle>Dev Neurobiol</addtitle><date>2010-09-01</date><risdate>2010</risdate><volume>70</volume><issue>10</issue><spage>679</spage><epage>692</epage><pages>679-692</pages><issn>1932-8451</issn><issn>1932-846X</issn><eissn>1932-846X</eissn><abstract>Spontaneous waves of activity that propagate across large structures during specific developmental stages play central roles in CNS development. To understand the genesis and functions of these waves, it is critical to understand the spatial and temporal patterns of their propagation. We recently reported that spontaneous waves in the neonatal cerebral cortex originate from a ventrolateral pacemaker region. We have now analyzed a large number of spontaneous waves using calcium imaging over the entire area of coronal slices from E18‐P1 mouse brains. In all waves, the first cortical region active is this ventrolateral pacemaker. In half of the waves, however, the cortical pacemaker activity is itself triggered by preceding activity in the septal nuclei. Most waves are restricted to the septum and/or ventral cortex, with only some invading the dorsal cortex or the contralateral hemisphere. Waves fail to propagate at very stereotyped locations at the boundary between ventral and dorsal cortex and at the dorsal midline. Waves that cross these boundaries pause at these same locations. Waves at these stages are blocked by both picrotoxin and CNQX, indicating that both GABAA and AMPA receptors are involved in spontaneous activity. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 679–692, 2010</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>20506182</pmid><doi>10.1002/dneu.20797</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-8451
ispartof Developmental neurobiology (Hoboken, N.J.), 2010-09, Vol.70 (10), p.679-692
issn 1932-8451
1932-846X
1932-846X
language eng
recordid cdi_proquest_miscellaneous_733989836
source Wiley-Blackwell Read & Publish Collection
subjects alpha -Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors
Animals
Biological Clocks - drug effects
Biological Clocks - physiology
Boundaries
Brain
Calcium imaging
Calcium Signaling - physiology
Calcium signalling
Central nervous system
Cerebral Cortex - embryology
Cerebral Cortex - physiology
Cortex
development
Developmental stages
Evoked Potentials - drug effects
Evoked Potentials - physiology
Female
Functional Laterality - physiology
gamma -Aminobutyric acid A receptors
Mice
Neonates
Nervous system
Neural Pathways - embryology
Neural Pathways - physiology
Neurons - drug effects
Neurons - physiology
Organ Culture Techniques
pacemaker
Pacemakers
picrotoxin
Septal Nuclei - embryology
Septal Nuclei - physiology
septal nucleus
Septum
spontaneous activity
Voltage-Sensitive Dye Imaging - methods
title Bimodal septal and cortical triggering and complex propagation patterns of spontaneous waves of activity in the developing mouse cerebral cortex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A52%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bimodal%20septal%20and%20cortical%20triggering%20and%20complex%20propagation%20patterns%20of%20spontaneous%20waves%20of%20activity%20in%20the%20developing%20mouse%20cerebral%20cortex&rft.jtitle=Developmental%20neurobiology%20(Hoboken,%20N.J.)&rft.au=Conhaim,%20Jay&rft.date=2010-09-01&rft.volume=70&rft.issue=10&rft.spage=679&rft.epage=692&rft.pages=679-692&rft.issn=1932-8451&rft.eissn=1932-846X&rft_id=info:doi/10.1002/dneu.20797&rft_dat=%3Cproquest_cross%3E1017972292%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3617-ce8d471a200d9f2b688627239fa06bb2b14e80996c1a7145257179caf27b8ffc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1017972292&rft_id=info:pmid/20506182&rfr_iscdi=true