Loading…
Chitosan-Modified Poly(acrylonitrile-co-acrylic acid) Nanofibrous Membranes for the Immobilization of Concanavalin A
Lectin affinity membranes have been receiving much attention for the separation and detection of various glycoconjugates. In this work, we present a simple and efficient method for the preparation of lectin affinity nanofibrous membranes. Chitosan-modified poly(acrylonitrile-co-acrylic acid) (PANCAA...
Saved in:
Published in: | Biomacromolecules 2008-12, Vol.9 (12), p.3397-3403 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lectin affinity membranes have been receiving much attention for the separation and detection of various glycoconjugates. In this work, we present a simple and efficient method for the preparation of lectin affinity nanofibrous membranes. Chitosan-modified poly(acrylonitrile-co-acrylic acid) (PANCAA) nanofibrous membranes were first prepared by a coupling reaction between the primary amino groups of chitosan and the carboxyl groups of PANCAA electrospun membranes. Surface characterizations by attenuated total reflectance Fourier transform infrared spectroscopy (FT-IR/ATR), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electron microscopy (FESEM) confirm the chemical and morphological changes of the studied nanofibrous membranes. Fluorescence-labeled concanavalin A (FL-Con A) was then immobilized on these membranes via noncovalent binding. Analyses by fluorescence spectrophotometer (FS) and confocal laser scanning microscopy (CLSM) reveal that the immobilization of Con A onto the modified nanofibrous membranes has been successfully achieved on the basis of the electrostatic interaction and the specific recognition between Con A and chitosan. The results show that the amount of adsorbed FL-Con A increases dramatically with the increasing coupling degree of chitosan (CDC) on the nanofibrous membrane. Moreover, Con A immobilized on the chitosan-modified nanofibrous membranes (CMNMs) can remain relatively stable at pH 5.3. Therefore, it is believed that this work may provide a new kind of material for affinity application. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm800882z |