Loading…

Oxygen plasma-treated thermoresponsive polymer surfaces for cell sheet engineering

Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that ha...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2010-06, Vol.106 (2), p.303-310
Main Authors: Shimizu, Kazunori, Fujita, Hideaki, Nagamori, Eiji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although cell sheet tissue engineering is a potent and promising method for tissue engineering, an increase of mechanical strength of a cell sheet is needed for easy manipulation of it during transplantation or 3D tissue fabrication. Previously, we developed a cell sheet-polymer film complex that had enough mechanical strength that can be manipulated even by tweezers (Fujita et al., 2009. Biotechnol Bioeng 103(2): 370-377). We confirmed the polymer film involving a temperature sensitive polymer and extracellular matrix (ECM) proteins could be removed by lowering temperature after transplantation, and its potential use in regenerative medicine was demonstrated. However, the use of ECM proteins conflicted with high stability in long-term storage and low cost. In the present study, to overcome these drawbacks, we employed the oxygen plasma treatment instead of using the ECM proteins. A cast and dried film of thermoresponsive poly-N-isopropylacrylamide (PNIPAAm) was fabricated and treated with high-intensity oxygen plasma. The cells became possible to adhere to the oxygen plasma-treated PNIPAAm surface, whereas could not to the inherent surface of bulk PNIPAAm without treatment. Characterizations of the treated surface revealed the surface had high stability. The surface roughness, wettability, and composition were changed, depending on the plasma intensity. Interestingly, although bulk PNIPAAm layer had thermoresponsiveness and dissolved below lower critical solution temperature (LCST), it was found that the oxygen plasma-treated PNIPAAm surface lost its thermoresponsiveness and remained insoluble in water below LCST as a thin layer. Skeletal muscle C2C12 cells could be cultured on the oxygen plasma-treated PNIPAAm surface, a skeletal muscle cell sheet with the insoluble thin layer could be released in the medium, and thus the possibility of use of the cell sheet for transplantation was demonstrated. Biotechnol. Bioeng. 2010;106: 303-310.
ISSN:0006-3592
1097-0290
DOI:10.1002/bit.22677