Loading…
Texture-Based Identification and Characterization of Interstitial Pneumonia Patterns in Lung Multidetector CT
Identification and characterization of diffuse parenchyma lung disease (DPLD) patterns challenges computer-aided schemes in computed tomography (CT) lung analysis. In this study, an automated scheme for volumetric quantification of interstitial pneumonia (IP) patterns, a subset of DPLD, is presented...
Saved in:
Published in: | IEEE journal of biomedical and health informatics 2010-05, Vol.14 (3), p.675-680 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Identification and characterization of diffuse parenchyma lung disease (DPLD) patterns challenges computer-aided schemes in computed tomography (CT) lung analysis. In this study, an automated scheme for volumetric quantification of interstitial pneumonia (IP) patterns, a subset of DPLD, is presented, utilizing a multidetector CT (MDCT) dataset. Initially, lung-field segmentation is achieved by 3-D automated gray-level thresholding combined with an edge-highlighting wavelet preprocessing step, followed by a texture-based border refinement step. The vessel tree volume is identified and removed from lung field, resulting in lung parenchyma (LP) volume. Following, identification and characterization of IP patterns is formulated as a three-class pattern classification of LP into normal, ground glass, and reticular patterns, by means of k -nearest neighbor voxel classification, exploiting 3-D cooccurrence features. Performance of the proposed scheme in indentifying and characterizing ground glass and reticular patterns was evaluated by means of volume overlap (ground glass: 0.734 ± 0.057, reticular: 0.815 ± 0.037), true-positive fraction (ground glass: 0.638 ± 0.055, reticular: 0.942 ± 0.023) and false-positive fraction (ground glass: 0.361 ± 0.027, reticular: 0.147 ± 0.032) on five MDCT scans. |
---|---|
ISSN: | 1089-7771 2168-2194 1558-0032 2168-2208 |
DOI: | 10.1109/TITB.2009.2036166 |