Loading…
Impact of multispores in vitro subcultivation of Glomus sp. MUCL 43194 (DAOM 197198) on vegetative compatibility and genetic diversity detected by AFLP
Vegetative compatibility and amplified fragment length polymorphism (AFLP) genotyping of in vitro multispores clonal lineages, issued from the same ancestor culture of the arbuscular mycorrhizal fungal strain MUCL 43194 and subcultured several generations in different locations, was assessed. Vegeta...
Saved in:
Published in: | Mycorrhiza 2010-08, Vol.20 (6), p.415-425 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vegetative compatibility and amplified fragment length polymorphism (AFLP) genotyping of in vitro multispores clonal lineages, issued from the same ancestor culture of the arbuscular mycorrhizal fungal strain MUCL 43194 and subcultured several generations in different locations, was assessed. Vegetative compatibility was studied by confronting the germ tubes of two spores from the same or different clonal lineages and stained with nitrotetrazolium blue-Trypan blue and diamidinophenylindole to detect hyphal fusions and nuclei, respectively. Further AFLP analysis of single spores was performed to assess the genetic profile and Dice similarity between clonal lineages. Germ tubes of spores distant by as many as 69 generations were capable of fusing. The anastomosis frequencies averaged 69% between spores from the same clonal lineage, 57% between spores from different clonal lineages, and 0% between spores belonging to different strains. The AFLP patterns showed similarities averaging 92% within clonal lineages and 86% between clonal lineages. Each spore presented unique genotype and some of them shared more markers with spores from different lineages than within the same lineage. We showed that MUCL 43194 maintained self-recognition for long periods of subcultures in vitro and that spores involved in compatibility tests had different genotypes. Our findings suggest that MUCL 43194 maintains genetic diversity by means of anastomoses. |
---|---|
ISSN: | 0940-6360 1432-1890 |
DOI: | 10.1007/s00572-009-0295-5 |