Loading…

Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species

Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The woun...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2009-09, Vol.151 (1), p.334-346
Main Authors: Wahler, Daniela, Gronover, Christian Schulze, Richter, Carolin, Foucu, Florence, Twyman, Richard M, Moerschbacher, Bruno M, Fischer, Rainer, Muth, Jost, Prüfer, Dirk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3
cites cdi_FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3
container_end_page 346
container_issue 1
container_start_page 334
container_title Plant physiology (Bethesda)
container_volume 151
creator Wahler, Daniela
Gronover, Christian Schulze
Richter, Carolin
Foucu, Florence
Twyman, Richard M
Moerschbacher, Bruno M
Fischer, Rainer
Muth, Jost
Prüfer, Dirk
description Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution.
doi_str_mv 10.1104/pp.109.138743
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_734037258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537772</jstor_id><sourcerecordid>40537772</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3</originalsourceid><addsrcrecordid>eNpFkU1r20AQhpfQkjgfxx7b6lJykjuzH1rtMZg0HxhacHwW4_XKVZC16q4E9r_PBpn0NAPvw8vwDGNfEOaIIH_2_RzBzFGUWoozNkMleM6VLD-xGUDaoSzNBbuM8RUAUKA8ZxdoClBK4Yw9__Htsf_rOt_6Q7Ol6LJV07rONt0uu6trZ4eYLWlwh2zhaTe2NDS-y5oue6FAB7LjPlv1zjYuXrPPNbXR3ZzmFVv_un9ZPObL3w9Pi7tlbhWYIZdWmGJjwahNsS0tKkMKnK7Jcc2pRmPSwaictqCI41YX0spiI4uShAFN4ordTr198P9GF4dq30Tr2pY658dYaSFBaK7KROYTaYOPMbi66kOzp3CsEKp3e1Xfp9VUk73Efzs1j5u92_6nT7oS8OMEULTU1oGSqPjBcTRSo1aJ-zpxr3Hw4SOXoITWmqf8-5TX5CvahdSxXvH0HcBCK41cvAEhg4l9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734037258</pqid></control><display><type>article</type><title>Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Wahler, Daniela ; Gronover, Christian Schulze ; Richter, Carolin ; Foucu, Florence ; Twyman, Richard M ; Moerschbacher, Bruno M ; Fischer, Rainer ; Muth, Jost ; Prüfer, Dirk</creator><creatorcontrib>Wahler, Daniela ; Gronover, Christian Schulze ; Richter, Carolin ; Foucu, Florence ; Twyman, Richard M ; Moerschbacher, Bruno M ; Fischer, Rainer ; Muth, Jost ; Prüfer, Dirk</creatorcontrib><description>Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.138743</identifier><identifier>PMID: 19605551</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Biological and medical sciences ; Catechol Oxidase - genetics ; Catechol Oxidase - metabolism ; Chloroplasts ; Coagulation ; Down-Regulation ; Enzymes ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Enzymologic - physiology ; Gene Expression Regulation, Plant - physiology ; Gene Silencing ; Latex ; Latex - chemistry ; Latex - metabolism ; Oxidases ; Plant physiology and development ; Plants ; Plants, Genetically Modified ; Polyphenols ; Proteins ; Rubber ; Systems Biology, Molecular Biology, and Gene Regulation ; Taraxacum - enzymology ; Taraxacum - genetics ; Transgenic plants</subject><ispartof>Plant physiology (Bethesda), 2009-09, Vol.151 (1), p.334-346</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3</citedby><cites>FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537772$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537772$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21947175$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19605551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wahler, Daniela</creatorcontrib><creatorcontrib>Gronover, Christian Schulze</creatorcontrib><creatorcontrib>Richter, Carolin</creatorcontrib><creatorcontrib>Foucu, Florence</creatorcontrib><creatorcontrib>Twyman, Richard M</creatorcontrib><creatorcontrib>Moerschbacher, Bruno M</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Muth, Jost</creatorcontrib><creatorcontrib>Prüfer, Dirk</creatorcontrib><title>Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution.</description><subject>Biological and medical sciences</subject><subject>Catechol Oxidase - genetics</subject><subject>Catechol Oxidase - metabolism</subject><subject>Chloroplasts</subject><subject>Coagulation</subject><subject>Down-Regulation</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Enzymologic - physiology</subject><subject>Gene Expression Regulation, Plant - physiology</subject><subject>Gene Silencing</subject><subject>Latex</subject><subject>Latex - chemistry</subject><subject>Latex - metabolism</subject><subject>Oxidases</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plants, Genetically Modified</subject><subject>Polyphenols</subject><subject>Proteins</subject><subject>Rubber</subject><subject>Systems Biology, Molecular Biology, and Gene Regulation</subject><subject>Taraxacum - enzymology</subject><subject>Taraxacum - genetics</subject><subject>Transgenic plants</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpFkU1r20AQhpfQkjgfxx7b6lJykjuzH1rtMZg0HxhacHwW4_XKVZC16q4E9r_PBpn0NAPvw8vwDGNfEOaIIH_2_RzBzFGUWoozNkMleM6VLD-xGUDaoSzNBbuM8RUAUKA8ZxdoClBK4Yw9__Htsf_rOt_6Q7Ol6LJV07rONt0uu6trZ4eYLWlwh2zhaTe2NDS-y5oue6FAB7LjPlv1zjYuXrPPNbXR3ZzmFVv_un9ZPObL3w9Pi7tlbhWYIZdWmGJjwahNsS0tKkMKnK7Jcc2pRmPSwaictqCI41YX0spiI4uShAFN4ordTr198P9GF4dq30Tr2pY658dYaSFBaK7KROYTaYOPMbi66kOzp3CsEKp3e1Xfp9VUk73Efzs1j5u92_6nT7oS8OMEULTU1oGSqPjBcTRSo1aJ-zpxr3Hw4SOXoITWmqf8-5TX5CvahdSxXvH0HcBCK41cvAEhg4l9</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Wahler, Daniela</creator><creator>Gronover, Christian Schulze</creator><creator>Richter, Carolin</creator><creator>Foucu, Florence</creator><creator>Twyman, Richard M</creator><creator>Moerschbacher, Bruno M</creator><creator>Fischer, Rainer</creator><creator>Muth, Jost</creator><creator>Prüfer, Dirk</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species</title><author>Wahler, Daniela ; Gronover, Christian Schulze ; Richter, Carolin ; Foucu, Florence ; Twyman, Richard M ; Moerschbacher, Bruno M ; Fischer, Rainer ; Muth, Jost ; Prüfer, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Catechol Oxidase - genetics</topic><topic>Catechol Oxidase - metabolism</topic><topic>Chloroplasts</topic><topic>Coagulation</topic><topic>Down-Regulation</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Enzymologic - physiology</topic><topic>Gene Expression Regulation, Plant - physiology</topic><topic>Gene Silencing</topic><topic>Latex</topic><topic>Latex - chemistry</topic><topic>Latex - metabolism</topic><topic>Oxidases</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plants, Genetically Modified</topic><topic>Polyphenols</topic><topic>Proteins</topic><topic>Rubber</topic><topic>Systems Biology, Molecular Biology, and Gene Regulation</topic><topic>Taraxacum - enzymology</topic><topic>Taraxacum - genetics</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wahler, Daniela</creatorcontrib><creatorcontrib>Gronover, Christian Schulze</creatorcontrib><creatorcontrib>Richter, Carolin</creatorcontrib><creatorcontrib>Foucu, Florence</creatorcontrib><creatorcontrib>Twyman, Richard M</creatorcontrib><creatorcontrib>Moerschbacher, Bruno M</creatorcontrib><creatorcontrib>Fischer, Rainer</creatorcontrib><creatorcontrib>Muth, Jost</creatorcontrib><creatorcontrib>Prüfer, Dirk</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wahler, Daniela</au><au>Gronover, Christian Schulze</au><au>Richter, Carolin</au><au>Foucu, Florence</au><au>Twyman, Richard M</au><au>Moerschbacher, Bruno M</au><au>Fischer, Rainer</au><au>Muth, Jost</au><au>Prüfer, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>151</volume><issue>1</issue><spage>334</spage><epage>346</epage><pages>334-346</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Latex is the milky sap that is found in many different plants. It is produced by specialized cells known as laticifers and can comprise a mixture of proteins, carbohydrates, oils, secondary metabolites, and rubber that may help to prevent herbivory and protect wound sites against infection. The wound-induced browning of latex suggests that it contains one or more phenol-oxidizing enzymes. Here, we present a comprehensive analysis of the major latex proteins from two dandelion species, Taraxacum officinale and Taraxacum kok-saghyz, and enzymatic studies showing that polyphenoloxidase (PPO) is responsible for latex browning. Electrophoretic analysis and amino-terminal sequencing of the most abundant proteins in the aqueous latex fraction revealed the presence of three PPO-related proteins generated by the proteolytic cleavage of a single precursor (pre-PPO). The laticifer-specific pre-PPO protein contains a transit peptide that can target reporter proteins into chloroplasts when constitutively expressed in dandelion protoplasts, perhaps indicating the presence of structures similar to plastids in laticifers, which lack genuine chloroplasts. Silencing the PPO gene by constitutive RNA interference in transgenic plants reduced PPO activity compared with wild-type controls, allowing T. kok-saghyz RNA interference lines to expel four to five times more latex than controls. Latex fluidity analysis in silenced plants showed a strong correlation between residual PPO activity and the coagulation rate, indicating that laticifer-specific PPO plays a major role in latex coagulation and wound sealing in dandelions. In contrast, very little PPO activity is found in the latex of the rubber tree Hevea brasiliensis, suggesting functional divergence of latex proteins during plant evolution.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19605551</pmid><doi>10.1104/pp.109.138743</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2009-09, Vol.151 (1), p.334-346
issn 0032-0889
1532-2548
1532-2548
language eng
recordid cdi_proquest_miscellaneous_734037258
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Biological and medical sciences
Catechol Oxidase - genetics
Catechol Oxidase - metabolism
Chloroplasts
Coagulation
Down-Regulation
Enzymes
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Enzymologic - physiology
Gene Expression Regulation, Plant - physiology
Gene Silencing
Latex
Latex - chemistry
Latex - metabolism
Oxidases
Plant physiology and development
Plants
Plants, Genetically Modified
Polyphenols
Proteins
Rubber
Systems Biology, Molecular Biology, and Gene Regulation
Taraxacum - enzymology
Taraxacum - genetics
Transgenic plants
title Polyphenoloxidase Silencing Affects Latex Coagulation in Taraxacum Species
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T21%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyphenoloxidase%20Silencing%20Affects%20Latex%20Coagulation%20in%20Taraxacum%20Species&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Wahler,%20Daniela&rft.date=2009-09-01&rft.volume=151&rft.issue=1&rft.spage=334&rft.epage=346&rft.pages=334-346&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.138743&rft_dat=%3Cjstor_proqu%3E40537772%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c509t-4c396bc095b6d8c159a50e7fae272af19988915e7c05a21d764c46b468a3907a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734037258&rft_id=info:pmid/19605551&rft_jstor_id=40537772&rfr_iscdi=true