Loading…
Analysis of modern technologies commonly used in beef cattle production: Conventional beef production versus nonconventional production using meta-analysis
Conventional feeding systems use pharmaceutical products not allowed in natural or organic systems for finishing cattle. This review of data compares the performance effects (ADG, G:F, DMI) of technologies used in conventional feeding programs that are prohibited in organic programs, natural program...
Saved in:
Published in: | Journal of animal science 2009-10, Vol.87 (10), p.3418-3426 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Conventional feeding systems use pharmaceutical products not allowed in natural or organic systems for finishing cattle. This review of data compares the performance effects (ADG, G:F, DMI) of technologies used in conventional feeding programs that are prohibited in organic programs, natural programs, or both. The technologies evaluated were steroid implants, monensin, tylosin, endectocides, and metaphylaxis with any antimicrobial. For inclusion in this analysis, studies were conducted in North America, reported randomization to treatment group, used beef cattle, contained an untreated control group, and were sourced from peer-reviewed journals. Forest plots were used to examine the data visually for trends toward a uniform effect of the technology on the outcomes of interest (ADG, DMI, G:F). Technologies that displayed a uniform response on the forest plot compared with negative controls were then analyzed using mixed models. Examination of forest plots for endectocides, steroid implants, monensin, and metaphylaxis technologies appeared to show performance advantages for treated cattle relative to cattle in negative control groups. An insufficient number of studies met the inclusion criteria to conduct meta-analyses comparing endectocides, monensin, or tylosin with negative controls. Average daily gain in feeder cattle given metaphylaxis on arrival was 0.11 kg/d (P < 0.01) greater relative to cattle that did not receive metaphylaxis on arrival. Implanting heifers increased ADG by 0.08 kg/d compared with nonimplanted controls (P = 0.09). Implants had no effect on G:F (P = 0.14) in heifers or on DMI (P = 0.44) relative to nonimplanted control heifers. Implanting steers was associated with greater ADG, by 0.25 kg/d (P < 0.01), and DMI, by 0.53 kg/d (P < 0.01), relative to nonimplanted control steers. Implants also improved G:F in steers relative to nonimplanted steers, by 0.02 (0.17 vs. 0.15; implanted vs. controls, P < 0.01; n = 21 studies). When average estimated differences in ADG and G:F for implanted and nonimplanted steers were incorporated into a breakeven model, implanted steers had a $77/animal lower cost of production than nonimplanted steers and a $349/animal lower cost of production than organically raised steers. These data illustrate the importance of capturing premiums when operating natural and organic production systems to maintain economic viability. |
---|---|
ISSN: | 0021-8812 1525-3163 |
DOI: | 10.2527/jas.2009-1778 |