Loading…
efficiency of purifying selection in Mammals vs. Drosophila for metabolic genes
The nearly neutral theory of molecular evolution states that the efficiency of natural selection depends on the effective population size. By using a wide range of multispecies data on nucleotide polymorphism, we have tried to ascertain whether there are any differences in the level of selective con...
Saved in:
Published in: | Journal of evolutionary biology 2009-10, Vol.22 (10), p.2118-2124 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The nearly neutral theory of molecular evolution states that the efficiency of natural selection depends on the effective population size. By using a wide range of multispecies data on nucleotide polymorphism, we have tried to ascertain whether there are any differences in the level of selective constraints of metabolic process genes between Mammals and Drosophila species. The results are consistent with a higher selective constraint in Drosophila than in Mammals, according to the expected under the nearly neutral model: purifying selection seems to be more efficient in species with a larger effective population size. |
---|---|
ISSN: | 1010-061X 1420-9101 |
DOI: | 10.1111/j.1420-9101.2009.01814.x |