Loading…
Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects
This study reports improved electrokinetically driven microfluidic T-mixers to enhance their mixing efficiency. Enhancement of electrokinetic microfluidic T-mixers is achieved using (i) an active approach of utilizing a pulsating EOF, and (ii) a passive approach of using the channel geometry effect...
Saved in:
Published in: | Electrophoresis 2009-09, Vol.30 (18), p.3144-3152 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study reports improved electrokinetically driven microfluidic T-mixers to enhance their mixing efficiency. Enhancement of electrokinetic microfluidic T-mixers is achieved using (i) an active approach of utilizing a pulsating EOF, and (ii) a passive approach of using the channel geometry effect with patterned blocks. PDMS-based electrokinetic T-mixers of different designs were fabricated. Experimental measurements were carried out using Rhodamine B to examine the mixing performance and the micro-particle image velocimetry technique to characterize the electrokinetic flow velocity field. Scaling analysis provides an effective frequency range of applied AC electric field. Results show that for a T-mixer of 10 mm mixing length, utilizing frequency modulated electric field and channel geometry effects can increase the mixing efficiency from 50 to 90%. In addition, numerical simulations were performed to analyze the mixing process in the electrokinetic T-mixers with various designs. The simulation results were compared with the experimental data, and reasonable agreement was found. |
---|---|
ISSN: | 0173-0835 1522-2683 |
DOI: | 10.1002/elps.200900162 |