Loading…
Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions
In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry...
Saved in:
Published in: | IEEE transactions on cybernetics 2009-12, Vol.39 (6), p.1434-1445 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973 |
---|---|
cites | cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973 |
container_end_page | 1445 |
container_issue | 6 |
container_start_page | 1434 |
container_title | IEEE transactions on cybernetics |
container_volume | 39 |
creator | Barnes, L.E. Fields, M.A. Valavanis, K.P. |
description | In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs). |
doi_str_mv | 10.1109/TSMCB.2009.2018139 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_734057346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4915742</ieee_id><sourcerecordid>1671227533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuAgiq3VP6Agixe9bM3kY7M5amlVWPHQ9hzS3VRS9qMmu4j-elO7KHjwMgnMMwPDi9A54DEAlreL-fPkfkwwlqFAClQeoCFIBjFmkhyGP05pzBjIATrxfoODxFIco0FATAhChiibv2tXRbPGVbq1TR1Nmrp1TRktW1vaT1u_RtOytNvW5rqM5p1b69z4SNdFlNnKtjsw6-p8N-tP0dFal96c9e8ILWfTxeQxzl4eniZ3WZwzlrYxlyLBWutcM84NFistwGBecGCpAZaHU4xJCm5WlFNGdUqwhoIkgkIqQQo6Qtf7vVvXvHXGt6qyPjdlqWvTdF4JyjAPJQny5l8JiQBCBKc00Ks_dNN0rg53qJQLjhkVEBDZo9w13juzVltnK-0-FGC1C0V9h6J2oag-lDB02W_uVpUpfkf6FAK42ANrjPlpMwlcMEK_AINDjqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857504371</pqid></control><display><type>article</type><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</creator><creatorcontrib>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</creatorcontrib><description>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2009.2018139</identifier><identifier>PMID: 19447722</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Automatic control ; Computer simulation ; Constraining ; Control surfaces ; Cybernetics ; Force control ; Formation control ; Geometry ; Mathematical analysis ; Mathematical models ; Multiagent systems ; Organizing ; potential fields ; Robot kinematics ; Robotics and automation ; Robots ; Space exploration ; Space missions ; Studies ; swarms ; Vehicles</subject><ispartof>IEEE transactions on cybernetics, 2009-12, Vol.39 (6), p.1434-1445</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</citedby><cites>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4915742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19447722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnes, L.E.</creatorcontrib><creatorcontrib>Fields, M.A.</creatorcontrib><creatorcontrib>Valavanis, K.P.</creatorcontrib><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</description><subject>Automatic control</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Control surfaces</subject><subject>Cybernetics</subject><subject>Force control</subject><subject>Formation control</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Organizing</subject><subject>potential fields</subject><subject>Robot kinematics</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Space exploration</subject><subject>Space missions</subject><subject>Studies</subject><subject>swarms</subject><subject>Vehicles</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1LAzEQBuAgiq3VP6Agixe9bM3kY7M5amlVWPHQ9hzS3VRS9qMmu4j-elO7KHjwMgnMMwPDi9A54DEAlreL-fPkfkwwlqFAClQeoCFIBjFmkhyGP05pzBjIATrxfoODxFIco0FATAhChiibv2tXRbPGVbq1TR1Nmrp1TRktW1vaT1u_RtOytNvW5rqM5p1b69z4SNdFlNnKtjsw6-p8N-tP0dFal96c9e8ILWfTxeQxzl4eniZ3WZwzlrYxlyLBWutcM84NFistwGBecGCpAZaHU4xJCm5WlFNGdUqwhoIkgkIqQQo6Qtf7vVvXvHXGt6qyPjdlqWvTdF4JyjAPJQny5l8JiQBCBKc00Ks_dNN0rg53qJQLjhkVEBDZo9w13juzVltnK-0-FGC1C0V9h6J2oag-lDB02W_uVpUpfkf6FAK42ANrjPlpMwlcMEK_AINDjqQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Barnes, L.E.</creator><creator>Fields, M.A.</creator><creator>Valavanis, K.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20091201</creationdate><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><author>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic control</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Control surfaces</topic><topic>Cybernetics</topic><topic>Force control</topic><topic>Formation control</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Organizing</topic><topic>potential fields</topic><topic>Robot kinematics</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Space exploration</topic><topic>Space missions</topic><topic>Studies</topic><topic>swarms</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, L.E.</creatorcontrib><creatorcontrib>Fields, M.A.</creatorcontrib><creatorcontrib>Valavanis, K.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, L.E.</au><au>Fields, M.A.</au><au>Valavanis, K.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>39</volume><issue>6</issue><spage>1434</spage><epage>1445</epage><pages>1434-1445</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19447722</pmid><doi>10.1109/TSMCB.2009.2018139</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1083-4419 |
ispartof | IEEE transactions on cybernetics, 2009-12, Vol.39 (6), p.1434-1445 |
issn | 1083-4419 2168-2267 1941-0492 2168-2275 |
language | eng |
recordid | cdi_proquest_miscellaneous_734057346 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Automatic control Computer simulation Constraining Control surfaces Cybernetics Force control Formation control Geometry Mathematical analysis Mathematical models Multiagent systems Organizing potential fields Robot kinematics Robotics and automation Robots Space exploration Space missions Studies swarms Vehicles |
title | Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20Formation%20Control%20Utilizing%20Elliptical%20Surfaces%20and%20Limiting%20Functions&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Barnes,%20L.E.&rft.date=2009-12-01&rft.volume=39&rft.issue=6&rft.spage=1434&rft.epage=1445&rft.pages=1434-1445&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2009.2018139&rft_dat=%3Cproquest_ieee_%3E1671227533%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857504371&rft_id=info:pmid/19447722&rft_ieee_id=4915742&rfr_iscdi=true |