Loading…

Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions

In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2009-12, Vol.39 (6), p.1434-1445
Main Authors: Barnes, L.E., Fields, M.A., Valavanis, K.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973
cites cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973
container_end_page 1445
container_issue 6
container_start_page 1434
container_title IEEE transactions on cybernetics
container_volume 39
creator Barnes, L.E.
Fields, M.A.
Valavanis, K.P.
description In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).
doi_str_mv 10.1109/TSMCB.2009.2018139
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_734057346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4915742</ieee_id><sourcerecordid>1671227533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</originalsourceid><addsrcrecordid>eNp90U1LAzEQBuAgiq3VP6Agixe9bM3kY7M5amlVWPHQ9hzS3VRS9qMmu4j-elO7KHjwMgnMMwPDi9A54DEAlreL-fPkfkwwlqFAClQeoCFIBjFmkhyGP05pzBjIATrxfoODxFIco0FATAhChiibv2tXRbPGVbq1TR1Nmrp1TRktW1vaT1u_RtOytNvW5rqM5p1b69z4SNdFlNnKtjsw6-p8N-tP0dFal96c9e8ILWfTxeQxzl4eniZ3WZwzlrYxlyLBWutcM84NFistwGBecGCpAZaHU4xJCm5WlFNGdUqwhoIkgkIqQQo6Qtf7vVvXvHXGt6qyPjdlqWvTdF4JyjAPJQny5l8JiQBCBKc00Ks_dNN0rg53qJQLjhkVEBDZo9w13juzVltnK-0-FGC1C0V9h6J2oag-lDB02W_uVpUpfkf6FAK42ANrjPlpMwlcMEK_AINDjqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>857504371</pqid></control><display><type>article</type><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</creator><creatorcontrib>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</creatorcontrib><description>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2009.2018139</identifier><identifier>PMID: 19447722</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Automatic control ; Computer simulation ; Constraining ; Control surfaces ; Cybernetics ; Force control ; Formation control ; Geometry ; Mathematical analysis ; Mathematical models ; Multiagent systems ; Organizing ; potential fields ; Robot kinematics ; Robotics and automation ; Robots ; Space exploration ; Space missions ; Studies ; swarms ; Vehicles</subject><ispartof>IEEE transactions on cybernetics, 2009-12, Vol.39 (6), p.1434-1445</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</citedby><cites>FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4915742$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19447722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnes, L.E.</creatorcontrib><creatorcontrib>Fields, M.A.</creatorcontrib><creatorcontrib>Valavanis, K.P.</creatorcontrib><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</description><subject>Automatic control</subject><subject>Computer simulation</subject><subject>Constraining</subject><subject>Control surfaces</subject><subject>Cybernetics</subject><subject>Force control</subject><subject>Formation control</subject><subject>Geometry</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiagent systems</subject><subject>Organizing</subject><subject>potential fields</subject><subject>Robot kinematics</subject><subject>Robotics and automation</subject><subject>Robots</subject><subject>Space exploration</subject><subject>Space missions</subject><subject>Studies</subject><subject>swarms</subject><subject>Vehicles</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp90U1LAzEQBuAgiq3VP6Agixe9bM3kY7M5amlVWPHQ9hzS3VRS9qMmu4j-elO7KHjwMgnMMwPDi9A54DEAlreL-fPkfkwwlqFAClQeoCFIBjFmkhyGP05pzBjIATrxfoODxFIco0FATAhChiibv2tXRbPGVbq1TR1Nmrp1TRktW1vaT1u_RtOytNvW5rqM5p1b69z4SNdFlNnKtjsw6-p8N-tP0dFal96c9e8ILWfTxeQxzl4eniZ3WZwzlrYxlyLBWutcM84NFistwGBecGCpAZaHU4xJCm5WlFNGdUqwhoIkgkIqQQo6Qtf7vVvXvHXGt6qyPjdlqWvTdF4JyjAPJQny5l8JiQBCBKc00Ks_dNN0rg53qJQLjhkVEBDZo9w13juzVltnK-0-FGC1C0V9h6J2oag-lDB02W_uVpUpfkf6FAK42ANrjPlpMwlcMEK_AINDjqQ</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Barnes, L.E.</creator><creator>Fields, M.A.</creator><creator>Valavanis, K.P.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20091201</creationdate><title>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</title><author>Barnes, L.E. ; Fields, M.A. ; Valavanis, K.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Automatic control</topic><topic>Computer simulation</topic><topic>Constraining</topic><topic>Control surfaces</topic><topic>Cybernetics</topic><topic>Force control</topic><topic>Formation control</topic><topic>Geometry</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiagent systems</topic><topic>Organizing</topic><topic>potential fields</topic><topic>Robot kinematics</topic><topic>Robotics and automation</topic><topic>Robots</topic><topic>Space exploration</topic><topic>Space missions</topic><topic>Studies</topic><topic>swarms</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnes, L.E.</creatorcontrib><creatorcontrib>Fields, M.A.</creatorcontrib><creatorcontrib>Valavanis, K.P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnes, L.E.</au><au>Fields, M.A.</au><au>Valavanis, K.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>39</volume><issue>6</issue><spage>1434</spage><epage>1445</epage><pages>1434-1445</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>In this paper, we present a strategy for organizing swarms of unmanned vehicles into a formation by utilizing artificial potential fields that were generated from normal and sigmoid functions. These functions construct the surface on which swarm members travel, controlling the overall swarm geometry and the individual member spacing. Nonlinear limiting functions are defined to provide tighter swarm control by modifying and adjusting a set of control variables that force the swarm to behave according to set constraints, formation, and member spacing. The artificial potential functions and limiting functions are combined to control swarm formation, orientation, and swarm movement as a whole. Parameters are chosen based on desired formation and user-defined constraints. This approach is computationally efficient and scales well to different swarm sizes, to heterogeneous systems, and to both centralized and decentralized swarm models. Simulation results are presented for a swarm of 10 and 40 robots that follow circle, ellipse, and wedge formations. Experimental results are included to demonstrate the applicability of the approach on a swarm of four custom-built unmanned ground vehicles (UGVs).</abstract><cop>United States</cop><pub>IEEE</pub><pmid>19447722</pmid><doi>10.1109/TSMCB.2009.2018139</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2009-12, Vol.39 (6), p.1434-1445
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_734057346
source IEEE Electronic Library (IEL) Journals
subjects Automatic control
Computer simulation
Constraining
Control surfaces
Cybernetics
Force control
Formation control
Geometry
Mathematical analysis
Mathematical models
Multiagent systems
Organizing
potential fields
Robot kinematics
Robotics and automation
Robots
Space exploration
Space missions
Studies
swarms
Vehicles
title Swarm Formation Control Utilizing Elliptical Surfaces and Limiting Functions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Swarm%20Formation%20Control%20Utilizing%20Elliptical%20Surfaces%20and%20Limiting%20Functions&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Barnes,%20L.E.&rft.date=2009-12-01&rft.volume=39&rft.issue=6&rft.spage=1434&rft.epage=1445&rft.pages=1434-1445&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2009.2018139&rft_dat=%3Cproquest_ieee_%3E1671227533%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-59760aaaca455e07ba71e05d5148e14c181ee6d5eb35343a820a1d26731891973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=857504371&rft_id=info:pmid/19447722&rft_ieee_id=4915742&rfr_iscdi=true