Loading…

Inkjet printed LED based pH chemical sensor for gas sensing

Predictable behaviour is a critical factor when developing a sensor for potential deployment within a wireless sensor network (WSN). The work presented here details the fabrication and performance of an optical chemical sensor for gaseous acetic acid analysis, which was constructed using inkjet prin...

Full description

Saved in:
Bibliographic Details
Published in:Analytica chimica acta 2009-10, Vol.652 (1), p.308-314
Main Authors: O’Toole, Martina, Shepherd, Roderick, Wallace, Gordon G., Diamond, Dermot
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Predictable behaviour is a critical factor when developing a sensor for potential deployment within a wireless sensor network (WSN). The work presented here details the fabrication and performance of an optical chemical sensor for gaseous acetic acid analysis, which was constructed using inkjet printed deposition of a colorimetric chemical sensor. The chemical sensor comprised a pH indicator dye (bromophenol blue), phase transfer salt tetrahexylammonium bromide and polymer ethyl cellulose dissolved in 1-butanol. A paired emitter-detector diode (PEDD) optical detector was employed to monitor responses of the colorimetric chemical sensor as it exhibits good sensitivity, low power consumption, is low cost, accurate and has excellent signal-to-noise ratios. The chemical sensor formulation was printed directly onto the surface of the emitter LED, and the resulting chemical sensors characterised with respect to their layer thickness, response time and recovery time. The fabrication reproducibility of inkjet printed chemical sensors in comparison to drop casted chemical sensors was investigated. Colorimetric chemical sensors produced by inkjet printing, exhibited an improved reproducibility for the detection of gaseous acetic acid with a relative standard deviation of 5.5% in comparison to 68.0% calculated for drop casted sensors ( n = 10). The stability of the chemical sensor was also investigated through both intra and inter-day studies.
ISSN:0003-2670
1873-4324
DOI:10.1016/j.aca.2009.07.019