Loading…

Pursuing “Zero” Protein Adsorption of Poly(carboxybetaine) from Undiluted Blood Serum and Plasma

Human blood serum and plasma pose significant challenges to blood-contacting devices and implanted materials because of their high nonspecific adsorption onto surfaces. In this work, we investigated nonspecific protein adsorption from single protein solutions and complex media such as undiluted huma...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2009-10, Vol.25 (19), p.11911-11916
Main Authors: Yang, Wei, Xue, Hong, Li, Wei, Zhang, Jinli, Jiang, Shaoyi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human blood serum and plasma pose significant challenges to blood-contacting devices and implanted materials because of their high nonspecific adsorption onto surfaces. In this work, we investigated nonspecific protein adsorption from single protein solutions and complex media such as undiluted human blood serum and plasma onto poly(carboxybetaine acrylamide) (polyCBAA)-grafted surfaces at different temperatures. The polyCBAA grafting was done via atom-transfer radical polymerization (ATRP) with varying film thicknesses. The objective is to create a surface that experiences “zero” protein adsorption from complex undiluted human blood serum and plasma. Results show that protein adsorption from undiluted human blood serum, plasma, and aged serum on the polyCBAA-grafted surface is undetectable at both 25 and 37 °C by a surface plasmon resonance (SPR) sensor. This was achieved with a film thickness of ∼21 nm. Furthermore, it is demonstrated that the polyCBAA surfaces after antibody immobilization maintain undetectable protein adsorption from undiluted human blood serum. This is the first time that an effective nonfouling material suitable for applications in complex blood media has been demonstrated.
ISSN:0743-7463
1520-5827
DOI:10.1021/la9015788