Loading…

Live-Cell Imaging Reveals Periarbuscular Membrane Domains and Organelle Location in Medicago truncatula Roots during Arbuscular Mycorrhizal Symbiosis

In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific membra...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2009-10, Vol.151 (2), p.809-819
Main Authors: Pumplin, Nathan, Harrison, Maria J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the arbuscular mycorrhizal symbiosis, the fungal symbiont colonizes root cortical cells, where it establishes differentiated hyphae called arbuscules. As each arbuscule develops, the cortical cell undergoes a transient reorganization and envelops the arbuscule in a novel symbiosis-specific membrane, called the periarbuscular membrane. The periarbuscular membrane, which is continuous with the plant plasma membrane of the cortical cell, is a key interface in the symbiosis; however, relatively little is known of its composition or the mechanisms of its development. Here, we used fluorescent protein fusions to obtain both spatial and temporal information about the protein composition of the periarbuscular membrane. The data indicate that the periarbuscular membrane is composed of at least two distinct domains, an "arbuscule branch domain" that contains the symbiosis-specific phosphate transporter, MtPT4, and an "arbuscule trunk domain" that contains MtBcp1. This suggests a developmental transition from plasma membrane to periarbuscular membrane, with biogenesis of a novel membrane domain associated with the repeated dichotomous branching of the hyphae. Additionally, we took advantage of available organelle-specific fluorescent marker proteins to further evaluate cells during arbuscule development and degeneration. The three-dimensional data provide new insights into relocation of Golgi and peroxisomes and also illustrate that cells with arbuscules can retain a large continuous vacuolar system throughout development.
ISSN:0032-0889
1532-2548
1532-2548
DOI:10.1104/pp.109.141879