Loading…

Photosensitization of optical fiber and silica-on-silicon/silica waveguides

Localized heating with a flame is shown to be a simple and effective method for substantially augmenting the photosensitivity of high-silica optical waveguides to (UV) light. The method increases the photosensitivity of standard (Ge-doped core) telecommunications fiber by a factor greater than 10 (p...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 1993-06, Vol.18 (12), p.953-955
Main Authors: BILODEAU, F, MALO, B, ALBERT, J, JOHNSON, D. C, HILL, K. O, HIBINO, Y, ABE, M, KAWACHI, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Localized heating with a flame is shown to be a simple and effective method for substantially augmenting the photosensitivity of high-silica optical waveguides to (UV) light. The method increases the photosensitivity of standard (Ge-doped core) telecommunications fiber by a factor greater than 10 (photoinduced Deltan(uv) > 10(-3)) and renders strongly photosensitive the cores of high-quality Ge:SiO(2)-on-Si and Ge:SiO(2)-on-SiO(2) planar waveguides that were negligibly photosensitive before treatment. We have written large-modulation-depth Bragg gratings, in both fiber and planar optical waveguides photosensitized by our method, using KrF (249-nm) radiation incident upon the waveguides through a zero-order-nulled phase mask. It is noteworthy that photosensitization by our method is achieved with a negligible increase in loss at the three principal optical communication windows.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.18.000953