Loading…

High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method

In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brai...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (1), p.303-315
Main Authors: Goldschmidt, Jürgen, Wanger, Tim, Engelhorn, Achim, Friedrich, Hergen, Happel, Max, Ilango, Anton, Engelmann, Mario, Stuermer, Ingo W., Ohl, Frank W., Scheich, Henning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923
cites cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923
container_end_page 315
container_issue 1
container_start_page 303
container_title NeuroImage (Orlando, Fla.)
container_volume 49
creator Goldschmidt, Jürgen
Wanger, Tim
Engelhorn, Achim
Friedrich, Hergen
Happel, Max
Ilango, Anton
Engelmann, Mario
Stuermer, Ingo W.
Ohl, Frank W.
Scheich, Henning
description In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.
doi_str_mv 10.1016/j.neuroimage.2009.08.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734093849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381190900874X</els_id><sourcerecordid>21136090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</originalsourceid><addsrcrecordid>eNqFkd-O1CAUhxujcf_oKxgSE71qBVoKeOfOrq7JJnqxXhMGTqdMaKnQTtwn8LWlO5Ns4oVeAeE755dzvqJABFcEk_bDvhphicENegcVxVhWWFSY0GfFOcGSlZJx-ny9s7oUhMiz4iKlPc4gacTL4ozIVlAm2Hnx-9bt-jJCCn6ZXRjRoKfJjTsUOvSYMWqPtJndwc0PaEnr19wD8m4KU--8M_mpvXfLgEwPXs-ATBgmD7_Qvb--3nxE32OYgwm5zWjRQXtn9WNSTlg7DTD3wb4qXnTaJ3h9Oi-LH59v7je35d23L183n-5K09R0LmkeTGNMCJe8tpzxxghcd1x3VlDTMc06DgCS1YTabbPdUs6JBmOksHl6Wl8W7499pxh-LpBmNbhkwHs9QliS4nWDZS0amcl3_yQpIXWLJc7g27_AfVhi3ltShOFWkFZykilxpEwMKUXo1BSzv_igCFarVLVXT1LVKlVhobLUXPrmFLBsB7BPhSeLGbg6ApA3d3AQVTIORgPWRTCzssH9P-UPI1e5wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506816971</pqid></control><display><type>article</type><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</creator><creatorcontrib>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</creatorcontrib><description>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.08.012</identifier><identifier>PMID: 19682585</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation ; Animals ; Aqueous solutions ; Autoradiography ; Behavior, Animal - drug effects ; Blood-brain barrier ; Brain - cytology ; Brain Mapping - methods ; Cerebral Cortex - physiology ; Chelating Agents - administration &amp; dosage ; Diethyldithiocarbamate ; Ditiocarb - administration &amp; dosage ; Female ; Formaldehyde ; GABA Agonists ; Gene expression ; Gerbillinae ; Imaging ; Injections, Intraperitoneal ; Injections, Intravenous ; Jugular Veins - physiology ; Laboratory animals ; Male ; Methods ; Muscimol ; Nanocrystals ; Neurons - physiology ; Pain Measurement - drug effects ; Permeability ; Potassium ; Radiopharmaceuticals - administration &amp; dosage ; Rats ; Rats, Wistar ; Reproducibility of Results ; Rodents ; Thallium ; Veins &amp; arteries</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.303-315</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</citedby><cites>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19682585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldschmidt, Jürgen</creatorcontrib><creatorcontrib>Wanger, Tim</creatorcontrib><creatorcontrib>Engelhorn, Achim</creatorcontrib><creatorcontrib>Friedrich, Hergen</creatorcontrib><creatorcontrib>Happel, Max</creatorcontrib><creatorcontrib>Ilango, Anton</creatorcontrib><creatorcontrib>Engelmann, Mario</creatorcontrib><creatorcontrib>Stuermer, Ingo W.</creatorcontrib><creatorcontrib>Ohl, Frank W.</creatorcontrib><creatorcontrib>Scheich, Henning</creatorcontrib><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Aqueous solutions</subject><subject>Autoradiography</subject><subject>Behavior, Animal - drug effects</subject><subject>Blood-brain barrier</subject><subject>Brain - cytology</subject><subject>Brain Mapping - methods</subject><subject>Cerebral Cortex - physiology</subject><subject>Chelating Agents - administration &amp; dosage</subject><subject>Diethyldithiocarbamate</subject><subject>Ditiocarb - administration &amp; dosage</subject><subject>Female</subject><subject>Formaldehyde</subject><subject>GABA Agonists</subject><subject>Gene expression</subject><subject>Gerbillinae</subject><subject>Imaging</subject><subject>Injections, Intraperitoneal</subject><subject>Injections, Intravenous</subject><subject>Jugular Veins - physiology</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Methods</subject><subject>Muscimol</subject><subject>Nanocrystals</subject><subject>Neurons - physiology</subject><subject>Pain Measurement - drug effects</subject><subject>Permeability</subject><subject>Potassium</subject><subject>Radiopharmaceuticals - administration &amp; dosage</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Thallium</subject><subject>Veins &amp; arteries</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkd-O1CAUhxujcf_oKxgSE71qBVoKeOfOrq7JJnqxXhMGTqdMaKnQTtwn8LWlO5Ns4oVeAeE755dzvqJABFcEk_bDvhphicENegcVxVhWWFSY0GfFOcGSlZJx-ny9s7oUhMiz4iKlPc4gacTL4ozIVlAm2Hnx-9bt-jJCCn6ZXRjRoKfJjTsUOvSYMWqPtJndwc0PaEnr19wD8m4KU--8M_mpvXfLgEwPXs-ATBgmD7_Qvb--3nxE32OYgwm5zWjRQXtn9WNSTlg7DTD3wb4qXnTaJ3h9Oi-LH59v7je35d23L183n-5K09R0LmkeTGNMCJe8tpzxxghcd1x3VlDTMc06DgCS1YTabbPdUs6JBmOksHl6Wl8W7499pxh-LpBmNbhkwHs9QliS4nWDZS0amcl3_yQpIXWLJc7g27_AfVhi3ltShOFWkFZykilxpEwMKUXo1BSzv_igCFarVLVXT1LVKlVhobLUXPrmFLBsB7BPhSeLGbg6ApA3d3AQVTIORgPWRTCzssH9P-UPI1e5wQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Goldschmidt, Jürgen</creator><creator>Wanger, Tim</creator><creator>Engelhorn, Achim</creator><creator>Friedrich, Hergen</creator><creator>Happel, Max</creator><creator>Ilango, Anton</creator><creator>Engelmann, Mario</creator><creator>Stuermer, Ingo W.</creator><creator>Ohl, Frank W.</creator><creator>Scheich, Henning</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><author>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Aqueous solutions</topic><topic>Autoradiography</topic><topic>Behavior, Animal - drug effects</topic><topic>Blood-brain barrier</topic><topic>Brain - cytology</topic><topic>Brain Mapping - methods</topic><topic>Cerebral Cortex - physiology</topic><topic>Chelating Agents - administration &amp; dosage</topic><topic>Diethyldithiocarbamate</topic><topic>Ditiocarb - administration &amp; dosage</topic><topic>Female</topic><topic>Formaldehyde</topic><topic>GABA Agonists</topic><topic>Gene expression</topic><topic>Gerbillinae</topic><topic>Imaging</topic><topic>Injections, Intraperitoneal</topic><topic>Injections, Intravenous</topic><topic>Jugular Veins - physiology</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Methods</topic><topic>Muscimol</topic><topic>Nanocrystals</topic><topic>Neurons - physiology</topic><topic>Pain Measurement - drug effects</topic><topic>Permeability</topic><topic>Potassium</topic><topic>Radiopharmaceuticals - administration &amp; dosage</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Thallium</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldschmidt, Jürgen</creatorcontrib><creatorcontrib>Wanger, Tim</creatorcontrib><creatorcontrib>Engelhorn, Achim</creatorcontrib><creatorcontrib>Friedrich, Hergen</creatorcontrib><creatorcontrib>Happel, Max</creatorcontrib><creatorcontrib>Ilango, Anton</creatorcontrib><creatorcontrib>Engelmann, Mario</creatorcontrib><creatorcontrib>Stuermer, Ingo W.</creatorcontrib><creatorcontrib>Ohl, Frank W.</creatorcontrib><creatorcontrib>Scheich, Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldschmidt, Jürgen</au><au>Wanger, Tim</au><au>Engelhorn, Achim</au><au>Friedrich, Hergen</au><au>Happel, Max</au><au>Ilango, Anton</au><au>Engelmann, Mario</au><au>Stuermer, Ingo W.</au><au>Ohl, Frank W.</au><au>Scheich, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>49</volume><issue>1</issue><spage>303</spage><epage>315</epage><pages>303-315</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19682585</pmid><doi>10.1016/j.neuroimage.2009.08.012</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.303-315
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_734093849
source ScienceDirect Freedom Collection 2022-2024
subjects Acoustic Stimulation
Animals
Aqueous solutions
Autoradiography
Behavior, Animal - drug effects
Blood-brain barrier
Brain - cytology
Brain Mapping - methods
Cerebral Cortex - physiology
Chelating Agents - administration & dosage
Diethyldithiocarbamate
Ditiocarb - administration & dosage
Female
Formaldehyde
GABA Agonists
Gene expression
Gerbillinae
Imaging
Injections, Intraperitoneal
Injections, Intravenous
Jugular Veins - physiology
Laboratory animals
Male
Methods
Muscimol
Nanocrystals
Neurons - physiology
Pain Measurement - drug effects
Permeability
Potassium
Radiopharmaceuticals - administration & dosage
Rats
Rats, Wistar
Reproducibility of Results
Rodents
Thallium
Veins & arteries
title High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20mapping%20of%20neuronal%20activity%20using%20the%20lipophilic%20thallium%20chelate%20complex%20TlDDC:%20Protocol%20and%20validation%20of%20the%20method&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Goldschmidt,%20J%C3%BCrgen&rft.date=2010-01-01&rft.volume=49&rft.issue=1&rft.spage=303&rft.epage=315&rft.pages=303-315&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.08.012&rft_dat=%3Cproquest_cross%3E21136090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506816971&rft_id=info:pmid/19682585&rfr_iscdi=true