Loading…
High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method
In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brai...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (1), p.303-315 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923 |
---|---|
cites | cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923 |
container_end_page | 315 |
container_issue | 1 |
container_start_page | 303 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 49 |
creator | Goldschmidt, Jürgen Wanger, Tim Engelhorn, Achim Friedrich, Hergen Happel, Max Ilango, Anton Engelmann, Mario Stuermer, Ingo W. Ohl, Frank W. Scheich, Henning |
description | In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min. |
doi_str_mv | 10.1016/j.neuroimage.2009.08.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734093849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105381190900874X</els_id><sourcerecordid>21136090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</originalsourceid><addsrcrecordid>eNqFkd-O1CAUhxujcf_oKxgSE71qBVoKeOfOrq7JJnqxXhMGTqdMaKnQTtwn8LWlO5Ns4oVeAeE755dzvqJABFcEk_bDvhphicENegcVxVhWWFSY0GfFOcGSlZJx-ny9s7oUhMiz4iKlPc4gacTL4ozIVlAm2Hnx-9bt-jJCCn6ZXRjRoKfJjTsUOvSYMWqPtJndwc0PaEnr19wD8m4KU--8M_mpvXfLgEwPXs-ATBgmD7_Qvb--3nxE32OYgwm5zWjRQXtn9WNSTlg7DTD3wb4qXnTaJ3h9Oi-LH59v7je35d23L183n-5K09R0LmkeTGNMCJe8tpzxxghcd1x3VlDTMc06DgCS1YTabbPdUs6JBmOksHl6Wl8W7499pxh-LpBmNbhkwHs9QliS4nWDZS0amcl3_yQpIXWLJc7g27_AfVhi3ltShOFWkFZykilxpEwMKUXo1BSzv_igCFarVLVXT1LVKlVhobLUXPrmFLBsB7BPhSeLGbg6ApA3d3AQVTIORgPWRTCzssH9P-UPI1e5wQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506816971</pqid></control><display><type>article</type><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</creator><creatorcontrib>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</creatorcontrib><description>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.08.012</identifier><identifier>PMID: 19682585</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acoustic Stimulation ; Animals ; Aqueous solutions ; Autoradiography ; Behavior, Animal - drug effects ; Blood-brain barrier ; Brain - cytology ; Brain Mapping - methods ; Cerebral Cortex - physiology ; Chelating Agents - administration & dosage ; Diethyldithiocarbamate ; Ditiocarb - administration & dosage ; Female ; Formaldehyde ; GABA Agonists ; Gene expression ; Gerbillinae ; Imaging ; Injections, Intraperitoneal ; Injections, Intravenous ; Jugular Veins - physiology ; Laboratory animals ; Male ; Methods ; Muscimol ; Nanocrystals ; Neurons - physiology ; Pain Measurement - drug effects ; Permeability ; Potassium ; Radiopharmaceuticals - administration & dosage ; Rats ; Rats, Wistar ; Reproducibility of Results ; Rodents ; Thallium ; Veins & arteries</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.303-315</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</citedby><cites>FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19682585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goldschmidt, Jürgen</creatorcontrib><creatorcontrib>Wanger, Tim</creatorcontrib><creatorcontrib>Engelhorn, Achim</creatorcontrib><creatorcontrib>Friedrich, Hergen</creatorcontrib><creatorcontrib>Happel, Max</creatorcontrib><creatorcontrib>Ilango, Anton</creatorcontrib><creatorcontrib>Engelmann, Mario</creatorcontrib><creatorcontrib>Stuermer, Ingo W.</creatorcontrib><creatorcontrib>Ohl, Frank W.</creatorcontrib><creatorcontrib>Scheich, Henning</creatorcontrib><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</description><subject>Acoustic Stimulation</subject><subject>Animals</subject><subject>Aqueous solutions</subject><subject>Autoradiography</subject><subject>Behavior, Animal - drug effects</subject><subject>Blood-brain barrier</subject><subject>Brain - cytology</subject><subject>Brain Mapping - methods</subject><subject>Cerebral Cortex - physiology</subject><subject>Chelating Agents - administration & dosage</subject><subject>Diethyldithiocarbamate</subject><subject>Ditiocarb - administration & dosage</subject><subject>Female</subject><subject>Formaldehyde</subject><subject>GABA Agonists</subject><subject>Gene expression</subject><subject>Gerbillinae</subject><subject>Imaging</subject><subject>Injections, Intraperitoneal</subject><subject>Injections, Intravenous</subject><subject>Jugular Veins - physiology</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Methods</subject><subject>Muscimol</subject><subject>Nanocrystals</subject><subject>Neurons - physiology</subject><subject>Pain Measurement - drug effects</subject><subject>Permeability</subject><subject>Potassium</subject><subject>Radiopharmaceuticals - administration & dosage</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Thallium</subject><subject>Veins & arteries</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkd-O1CAUhxujcf_oKxgSE71qBVoKeOfOrq7JJnqxXhMGTqdMaKnQTtwn8LWlO5Ns4oVeAeE755dzvqJABFcEk_bDvhphicENegcVxVhWWFSY0GfFOcGSlZJx-ny9s7oUhMiz4iKlPc4gacTL4ozIVlAm2Hnx-9bt-jJCCn6ZXRjRoKfJjTsUOvSYMWqPtJndwc0PaEnr19wD8m4KU--8M_mpvXfLgEwPXs-ATBgmD7_Qvb--3nxE32OYgwm5zWjRQXtn9WNSTlg7DTD3wb4qXnTaJ3h9Oi-LH59v7je35d23L183n-5K09R0LmkeTGNMCJe8tpzxxghcd1x3VlDTMc06DgCS1YTabbPdUs6JBmOksHl6Wl8W7499pxh-LpBmNbhkwHs9QliS4nWDZS0amcl3_yQpIXWLJc7g27_AfVhi3ltShOFWkFZykilxpEwMKUXo1BSzv_igCFarVLVXT1LVKlVhobLUXPrmFLBsB7BPhSeLGbg6ApA3d3AQVTIORgPWRTCzssH9P-UPI1e5wQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Goldschmidt, Jürgen</creator><creator>Wanger, Tim</creator><creator>Engelhorn, Achim</creator><creator>Friedrich, Hergen</creator><creator>Happel, Max</creator><creator>Ilango, Anton</creator><creator>Engelmann, Mario</creator><creator>Stuermer, Ingo W.</creator><creator>Ohl, Frank W.</creator><creator>Scheich, Henning</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</title><author>Goldschmidt, Jürgen ; Wanger, Tim ; Engelhorn, Achim ; Friedrich, Hergen ; Happel, Max ; Ilango, Anton ; Engelmann, Mario ; Stuermer, Ingo W. ; Ohl, Frank W. ; Scheich, Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acoustic Stimulation</topic><topic>Animals</topic><topic>Aqueous solutions</topic><topic>Autoradiography</topic><topic>Behavior, Animal - drug effects</topic><topic>Blood-brain barrier</topic><topic>Brain - cytology</topic><topic>Brain Mapping - methods</topic><topic>Cerebral Cortex - physiology</topic><topic>Chelating Agents - administration & dosage</topic><topic>Diethyldithiocarbamate</topic><topic>Ditiocarb - administration & dosage</topic><topic>Female</topic><topic>Formaldehyde</topic><topic>GABA Agonists</topic><topic>Gene expression</topic><topic>Gerbillinae</topic><topic>Imaging</topic><topic>Injections, Intraperitoneal</topic><topic>Injections, Intravenous</topic><topic>Jugular Veins - physiology</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Methods</topic><topic>Muscimol</topic><topic>Nanocrystals</topic><topic>Neurons - physiology</topic><topic>Pain Measurement - drug effects</topic><topic>Permeability</topic><topic>Potassium</topic><topic>Radiopharmaceuticals - administration & dosage</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Thallium</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldschmidt, Jürgen</creatorcontrib><creatorcontrib>Wanger, Tim</creatorcontrib><creatorcontrib>Engelhorn, Achim</creatorcontrib><creatorcontrib>Friedrich, Hergen</creatorcontrib><creatorcontrib>Happel, Max</creatorcontrib><creatorcontrib>Ilango, Anton</creatorcontrib><creatorcontrib>Engelmann, Mario</creatorcontrib><creatorcontrib>Stuermer, Ingo W.</creatorcontrib><creatorcontrib>Ohl, Frank W.</creatorcontrib><creatorcontrib>Scheich, Henning</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldschmidt, Jürgen</au><au>Wanger, Tim</au><au>Engelhorn, Achim</au><au>Friedrich, Hergen</au><au>Happel, Max</au><au>Ilango, Anton</au><au>Engelmann, Mario</au><au>Stuermer, Ingo W.</au><au>Ohl, Frank W.</au><au>Scheich, Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>49</volume><issue>1</issue><spage>303</spage><epage>315</epage><pages>303-315</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>In neurons the rate of K+-uptake increases with increasing activity. K+-analogues like the heavy metal ion thallium (Tl+) can be used, therefore, as tracers for imaging neuronal activity. However, when water-soluble Tl+-salts are injected systemically only minute amounts of the tracer enter the brain and the Tl+-uptake patterns are influenced by regional differences in blood–brain barrier (BBB) K+-permeability. We here show that the BBB-related limitations in using Tl+ for imaging neuronal activity are no longer present when the lipophilic Tl+ chelate complex thallium diethyldithiocarbamate (TlDDC) is applied. We systemically injected rodents with TlDDC and mapped the Tl+-distribution in the brain using an autometallographic (AMG) technique, a histochemical method for detecting heavy metals. We find that Tl+-doses for optimum AMG staining could be substantially reduced, and regional differences attributable to differences in BBB K+-permeability were no longer detectable, indicating that TlDDC crosses the BBB. At the cellular level, however, the Tl+-distribution was essentially the same as after injection of water-soluble Tl+-salts, indicating Tl+-release from TlDDC prior to neuronal or glial uptake. Upon sensory stimulation or intracortical microstimulation neuronal Tl+-uptake increased after TlDDC injection, upon muscimol treatment neuronal Tl+-uptake decreased. We present a protocol for mapping neuronal activity with cellular resolution, which is based on intravenous TlDDC injections during ongoing activity in unrestrained behaving animals and short stimulation times of 5 min.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19682585</pmid><doi>10.1016/j.neuroimage.2009.08.012</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.303-315 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_734093849 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Acoustic Stimulation Animals Aqueous solutions Autoradiography Behavior, Animal - drug effects Blood-brain barrier Brain - cytology Brain Mapping - methods Cerebral Cortex - physiology Chelating Agents - administration & dosage Diethyldithiocarbamate Ditiocarb - administration & dosage Female Formaldehyde GABA Agonists Gene expression Gerbillinae Imaging Injections, Intraperitoneal Injections, Intravenous Jugular Veins - physiology Laboratory animals Male Methods Muscimol Nanocrystals Neurons - physiology Pain Measurement - drug effects Permeability Potassium Radiopharmaceuticals - administration & dosage Rats Rats, Wistar Reproducibility of Results Rodents Thallium Veins & arteries |
title | High-resolution mapping of neuronal activity using the lipophilic thallium chelate complex TlDDC: Protocol and validation of the method |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20mapping%20of%20neuronal%20activity%20using%20the%20lipophilic%20thallium%20chelate%20complex%20TlDDC:%20Protocol%20and%20validation%20of%20the%20method&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Goldschmidt,%20J%C3%BCrgen&rft.date=2010-01-01&rft.volume=49&rft.issue=1&rft.spage=303&rft.epage=315&rft.pages=303-315&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.08.012&rft_dat=%3Cproquest_cross%3E21136090%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c432t-2572a00117973d7574c803f7afd82cf5a5f7eee95312db4bb2771aecc98d00923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506816971&rft_id=info:pmid/19682585&rfr_iscdi=true |