Loading…
Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis
Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signa...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2010-01, Vol.49 (1), p.257-271 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93 |
container_end_page | 271 |
container_issue | 1 |
container_start_page | 257 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 49 |
creator | Hyvärinen, Aapo Ramkumar, Pavan Parkkonen, Lauri Hari, Riitta |
description | Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method. |
doi_str_mv | 10.1016/j.neuroimage.2009.08.028 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734093969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811909009409</els_id><sourcerecordid>21220950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERUvhFZAlJHpKOraT2D5CtV0qteICZ-MkY8hqEy92Uqlv31ntiko9tJexD9_M2P_HGBdQChDN5aaccElxGP0fLCWALcGUIM0bdibA1oWttXy7v9eqMELYU_Y-5w0QKCrzjp0K21irQJ-x3zdTjzukMs28i-MuTvubn_z2IQ-Zx8Dz35jmYh5G5NdxSQMmPic_5RDTmDlVnqlr9hPGJfPVan15t1r_n_CBnQS_zfjxeJ6zX9ern1ffi9sf65urr7dFV0s7F1ajMJVW2viq9UIY7_vKy0qit21vVFf33oZGt0G2JoBS3vvGBl1LoaAJVp2zi8PcXYr_FsyzG4fc4XZ7eJfTqgKr6N9EfnmRVDWABC1eBaWQktIGAj8_AzcUFAWQnaihMUJDJYkyB6pLMeeEwe0SGUwPToDba3Ub96TV7bU6MI60Uuun44KlHbF_ajx6JODbAUCK-J4UudwNOHXYDwm72fVxeH3LI2D8uQQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506817042</pqid></control><display><type>article</type><title>Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis</title><source>ScienceDirect Journals</source><creator>Hyvärinen, Aapo ; Ramkumar, Pavan ; Parkkonen, Lauri ; Hari, Riitta</creator><creatorcontrib>Hyvärinen, Aapo ; Ramkumar, Pavan ; Parkkonen, Lauri ; Hari, Riitta</creatorcontrib><description>Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2009.08.028</identifier><identifier>PMID: 19699307</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Brain - anatomy & histology ; Brain rhythms ; Electroencephalography ; Electroencephalography - statistics & numerical data ; Fourier Analysis ; Fourier transforms ; Humans ; Independent component analysis ; Magnetoencephalography (MEG) ; Magnetoencephalography - statistics & numerical data ; Models, Statistical ; Normal Distribution ; Principal Component Analysis ; Reproducibility of Results ; Resting state</subject><ispartof>NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.257-271</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Jan 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93</citedby><cites>FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19699307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hyvärinen, Aapo</creatorcontrib><creatorcontrib>Ramkumar, Pavan</creatorcontrib><creatorcontrib>Parkkonen, Lauri</creatorcontrib><creatorcontrib>Hari, Riitta</creatorcontrib><title>Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method.</description><subject>Algorithms</subject><subject>Brain - anatomy & histology</subject><subject>Brain rhythms</subject><subject>Electroencephalography</subject><subject>Electroencephalography - statistics & numerical data</subject><subject>Fourier Analysis</subject><subject>Fourier transforms</subject><subject>Humans</subject><subject>Independent component analysis</subject><subject>Magnetoencephalography (MEG)</subject><subject>Magnetoencephalography - statistics & numerical data</subject><subject>Models, Statistical</subject><subject>Normal Distribution</subject><subject>Principal Component Analysis</subject><subject>Reproducibility of Results</subject><subject>Resting state</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkcFu1DAQhi1ERUvhFZAlJHpKOraT2D5CtV0qteICZ-MkY8hqEy92Uqlv31ntiko9tJexD9_M2P_HGBdQChDN5aaccElxGP0fLCWALcGUIM0bdibA1oWttXy7v9eqMELYU_Y-5w0QKCrzjp0K21irQJ-x3zdTjzukMs28i-MuTvubn_z2IQ-Zx8Dz35jmYh5G5NdxSQMmPic_5RDTmDlVnqlr9hPGJfPVan15t1r_n_CBnQS_zfjxeJ6zX9ern1ffi9sf65urr7dFV0s7F1ajMJVW2viq9UIY7_vKy0qit21vVFf33oZGt0G2JoBS3vvGBl1LoaAJVp2zi8PcXYr_FsyzG4fc4XZ7eJfTqgKr6N9EfnmRVDWABC1eBaWQktIGAj8_AzcUFAWQnaihMUJDJYkyB6pLMeeEwe0SGUwPToDba3Ub96TV7bU6MI60Uuun44KlHbF_ajx6JODbAUCK-J4UudwNOHXYDwm72fVxeH3LI2D8uQQ</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Hyvärinen, Aapo</creator><creator>Ramkumar, Pavan</creator><creator>Parkkonen, Lauri</creator><creator>Hari, Riitta</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QO</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis</title><author>Hyvärinen, Aapo ; Ramkumar, Pavan ; Parkkonen, Lauri ; Hari, Riitta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Brain - anatomy & histology</topic><topic>Brain rhythms</topic><topic>Electroencephalography</topic><topic>Electroencephalography - statistics & numerical data</topic><topic>Fourier Analysis</topic><topic>Fourier transforms</topic><topic>Humans</topic><topic>Independent component analysis</topic><topic>Magnetoencephalography (MEG)</topic><topic>Magnetoencephalography - statistics & numerical data</topic><topic>Models, Statistical</topic><topic>Normal Distribution</topic><topic>Principal Component Analysis</topic><topic>Reproducibility of Results</topic><topic>Resting state</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hyvärinen, Aapo</creatorcontrib><creatorcontrib>Ramkumar, Pavan</creatorcontrib><creatorcontrib>Parkkonen, Lauri</creatorcontrib><creatorcontrib>Hari, Riitta</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hyvärinen, Aapo</au><au>Ramkumar, Pavan</au><au>Parkkonen, Lauri</au><au>Hari, Riitta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>49</volume><issue>1</issue><spage>257</spage><epage>271</epage><pages>257-271</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Analysis of spontaneous EEG/MEG needs unsupervised learning methods. While independent component analysis (ICA) has been successfully applied on spontaneous fMRI, it seems to be too sensitive to technical artifacts in EEG/MEG. We propose to apply ICA on short-time Fourier transforms of EEG/MEG signals, in order to find more “interesting” sources than with time-domain ICA, and to more meaningfully sort the obtained components. The method is especially useful for finding sources of rhythmic activity. Furthermore, we propose to use a complex mixing matrix to model sources which are spatially extended and have different phases in different EEG/MEG channels. Simulations with artificial data and experiments on resting-state MEG demonstrate the utility of the method.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19699307</pmid><doi>10.1016/j.neuroimage.2009.08.028</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2010-01, Vol.49 (1), p.257-271 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_734093969 |
source | ScienceDirect Journals |
subjects | Algorithms Brain - anatomy & histology Brain rhythms Electroencephalography Electroencephalography - statistics & numerical data Fourier Analysis Fourier transforms Humans Independent component analysis Magnetoencephalography (MEG) Magnetoencephalography - statistics & numerical data Models, Statistical Normal Distribution Principal Component Analysis Reproducibility of Results Resting state |
title | Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Independent%20component%20analysis%20of%20short-time%20Fourier%20transforms%20for%20spontaneous%20EEG/MEG%20analysis&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Hyv%C3%A4rinen,%20Aapo&rft.date=2010-01-01&rft.volume=49&rft.issue=1&rft.spage=257&rft.epage=271&rft.pages=257-271&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2009.08.028&rft_dat=%3Cproquest_cross%3E21220950%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c529t-97e1847378a4ba118aad4a242ea9bd83c5da9f67bf2b8f033aaa69f7521306f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506817042&rft_id=info:pmid/19699307&rfr_iscdi=true |