Loading…

Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes

The modified PVDF membranes were prepared by adding different amounts of TiO(2) particles (0-4 wt.%) into the casting solution. The TiO(2) entrapped PVDF membranes (0-4% PVDF/TiO(2)) were tested for its antibacterial property by using Escherichia Coliform (E. Coli), photoactive property using Reacti...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2009-12, Vol.172 (2-3), p.1321-1328
Main Authors: Damodar, Rahul A, You, Sheng-Jie, Chou, Hui-Hsiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The modified PVDF membranes were prepared by adding different amounts of TiO(2) particles (0-4 wt.%) into the casting solution. The TiO(2) entrapped PVDF membranes (0-4% PVDF/TiO(2)) were tested for its antibacterial property by using Escherichia Coliform (E. Coli), photoactive property using Reactive Black 5 (RB5) dye and self cleaning (antifouling) properties by fouling using 1% BSA solution. Results showed that TiO(2) addition significantly affects the pore size and hydrophilicity of the PVDF/TiO(2) membrane. This also improves the flux and permeability of modified PVDF/TiO(2) membrane. The results of antibacterial study showed that the composite PVDF/TiO(2) membrane removes E. Coli at a very faster rate than neat PVDF membrane and membrane with 4% TiO(2) possess highest antibacterial property. The RB5 dye removal using PVDF/TiO(2) occurs under UV by photolysis and photocatalysis mechanisms. The rate of RB5 dye color removal was faster as compared to the rate of aromatic ring structure. The resistance study showed 2% TiO(2) membrane having lower fouling resistance as compared to others. The fouling resistance caused by loosely bound protein (R(c)) was lower than the strongly bound protein (R(f)). The performance of fouled membranes flux and TMP can be recovered to its initial value by simple UV treatment.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2009.07.139