Loading…

Chitosan-induced programmed cell death in plants

Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Moscow) 2009-09, Vol.74 (9), p.1035-1043
Main Authors: Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., Samuilov, V. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3
cites cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3
container_end_page 1043
container_issue 9
container_start_page 1035
container_title Biochemistry (Moscow)
container_volume 74
creator Vasil’ev, L. A.
Dzyubinskaya, E. V.
Zinovkin, R. A.
Kiselevsky, D. B.
Lobysheva, N. V.
Samuilov, V. D.
description Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H 2 O 2 , or chitosan + H 2 O 2 on EC. H 2 O 2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN − and the protonophoric uncoupler carbonyl cyanide m -chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN − -induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN − -induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H 2 O 2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H 2 O 2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.
doi_str_mv 10.1134/S0006297909090120
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734143314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734143314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaK4a_UHeJHixVM1k6TJ5ijFL1jwoJ5Dmia7XfqxJu3Bf2_qLiwoEoaZ8N68eTyELgHfAlB294Yx5kQKiacHBB-hOXC8yChm-BjNJzib8Bk6C2ETvwRLeopmICVwCfkc4WJdD33QXVZ31WhslW59v_K6beNobNOkldXDOq27dNvobgjn6MTpJtiLfU_Qx-PDe_GcLV-fXor7ZWaowEPmclFqWYIxmFBi8wWUOuc0FyR2JyriAHjJuTGCCK6N02ArSxzTzDFOLU3QzU43-vkcbRhUW4fJkO5sPwYlKANGaawEXf9ibvrRd9Gciqep_KkEwY5kfB-Ct05tfd1q_6UAqylM9SfMuHO1Fx7LGMdhY59eJJAdIUSoW1l_uPy_6jcZTHyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232393239</pqid></control><display><type>article</type><title>Chitosan-induced programmed cell death in plants</title><source>Springer Link</source><creator>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</creator><creatorcontrib>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</creatorcontrib><description>Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H 2 O 2 , or chitosan + H 2 O 2 on EC. H 2 O 2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN − and the protonophoric uncoupler carbonyl cyanide m -chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN − -induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN − -induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H 2 O 2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H 2 O 2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297909090120</identifier><identifier>PMID: 19916915</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Anaerobic conditions ; Apoptosis - drug effects ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Botany ; Carbonyl compounds ; Cell death ; Cellular biology ; Chitosan - pharmacology ; Chromatin ; Deoxyribonucleic acid ; DNA ; DNA, Plant ; Epidermis ; Fluoresceins - chemistry ; Hydrogen peroxide ; Legumes ; Life Sciences ; Microbiology ; Mortality ; Pisum sativum - cytology ; Pisum sativum - genetics ; Protein synthesis ; Spectrometry, Fluorescence</subject><ispartof>Biochemistry (Moscow), 2009-09, Vol.74 (9), p.1035-1043</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</citedby><cites>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19916915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasil’ev, L. A.</creatorcontrib><creatorcontrib>Dzyubinskaya, E. V.</creatorcontrib><creatorcontrib>Zinovkin, R. A.</creatorcontrib><creatorcontrib>Kiselevsky, D. B.</creatorcontrib><creatorcontrib>Lobysheva, N. V.</creatorcontrib><creatorcontrib>Samuilov, V. D.</creatorcontrib><title>Chitosan-induced programmed cell death in plants</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H 2 O 2 , or chitosan + H 2 O 2 on EC. H 2 O 2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN − and the protonophoric uncoupler carbonyl cyanide m -chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN − -induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN − -induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H 2 O 2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H 2 O 2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</description><subject>Anaerobic conditions</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Botany</subject><subject>Carbonyl compounds</subject><subject>Cell death</subject><subject>Cellular biology</subject><subject>Chitosan - pharmacology</subject><subject>Chromatin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant</subject><subject>Epidermis</subject><subject>Fluoresceins - chemistry</subject><subject>Hydrogen peroxide</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mortality</subject><subject>Pisum sativum - cytology</subject><subject>Pisum sativum - genetics</subject><subject>Protein synthesis</subject><subject>Spectrometry, Fluorescence</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaK4a_UHeJHixVM1k6TJ5ijFL1jwoJ5Dmia7XfqxJu3Bf2_qLiwoEoaZ8N68eTyELgHfAlB294Yx5kQKiacHBB-hOXC8yChm-BjNJzib8Bk6C2ETvwRLeopmICVwCfkc4WJdD33QXVZ31WhslW59v_K6beNobNOkldXDOq27dNvobgjn6MTpJtiLfU_Qx-PDe_GcLV-fXor7ZWaowEPmclFqWYIxmFBi8wWUOuc0FyR2JyriAHjJuTGCCK6N02ArSxzTzDFOLU3QzU43-vkcbRhUW4fJkO5sPwYlKANGaawEXf9ibvrRd9Gciqep_KkEwY5kfB-Ct05tfd1q_6UAqylM9SfMuHO1Fx7LGMdhY59eJJAdIUSoW1l_uPy_6jcZTHyE</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Vasil’ev, L. A.</creator><creator>Dzyubinskaya, E. V.</creator><creator>Zinovkin, R. A.</creator><creator>Kiselevsky, D. B.</creator><creator>Lobysheva, N. V.</creator><creator>Samuilov, V. D.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Chitosan-induced programmed cell death in plants</title><author>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anaerobic conditions</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Botany</topic><topic>Carbonyl compounds</topic><topic>Cell death</topic><topic>Cellular biology</topic><topic>Chitosan - pharmacology</topic><topic>Chromatin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant</topic><topic>Epidermis</topic><topic>Fluoresceins - chemistry</topic><topic>Hydrogen peroxide</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mortality</topic><topic>Pisum sativum - cytology</topic><topic>Pisum sativum - genetics</topic><topic>Protein synthesis</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’ev, L. A.</creatorcontrib><creatorcontrib>Dzyubinskaya, E. V.</creatorcontrib><creatorcontrib>Zinovkin, R. A.</creatorcontrib><creatorcontrib>Kiselevsky, D. B.</creatorcontrib><creatorcontrib>Lobysheva, N. V.</creatorcontrib><creatorcontrib>Samuilov, V. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’ev, L. A.</au><au>Dzyubinskaya, E. V.</au><au>Zinovkin, R. A.</au><au>Kiselevsky, D. B.</au><au>Lobysheva, N. V.</au><au>Samuilov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-induced programmed cell death in plants</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>74</volume><issue>9</issue><spage>1035</spage><epage>1043</epage><pages>1035-1043</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H 2 O 2 , or chitosan + H 2 O 2 on EC. H 2 O 2 formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN − and the protonophoric uncoupler carbonyl cyanide m -chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN − -induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN − -induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H 2 O 2 on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H 2 O 2 as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><pmid>19916915</pmid><doi>10.1134/S0006297909090120</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2979
ispartof Biochemistry (Moscow), 2009-09, Vol.74 (9), p.1035-1043
issn 0006-2979
1608-3040
language eng
recordid cdi_proquest_miscellaneous_734143314
source Springer Link
subjects Anaerobic conditions
Apoptosis - drug effects
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bioorganic Chemistry
Botany
Carbonyl compounds
Cell death
Cellular biology
Chitosan - pharmacology
Chromatin
Deoxyribonucleic acid
DNA
DNA, Plant
Epidermis
Fluoresceins - chemistry
Hydrogen peroxide
Legumes
Life Sciences
Microbiology
Mortality
Pisum sativum - cytology
Pisum sativum - genetics
Protein synthesis
Spectrometry, Fluorescence
title Chitosan-induced programmed cell death in plants
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-induced%20programmed%20cell%20death%20in%20plants&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Vasil%E2%80%99ev,%20L.%20A.&rft.date=2009-09-01&rft.volume=74&rft.issue=9&rft.spage=1035&rft.epage=1043&rft.pages=1035-1043&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297909090120&rft_dat=%3Cproquest_cross%3E734143314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232393239&rft_id=info:pmid/19916915&rfr_iscdi=true