Loading…
Chitosan-induced programmed cell death in plants
Chitosan, CN − , or H 2 O 2 caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA...
Saved in:
Published in: | Biochemistry (Moscow) 2009-09, Vol.74 (9), p.1035-1043 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3 |
container_end_page | 1043 |
container_issue | 9 |
container_start_page | 1035 |
container_title | Biochemistry (Moscow) |
container_volume | 74 |
creator | Vasil’ev, L. A. Dzyubinskaya, E. V. Zinovkin, R. A. Kiselevsky, D. B. Lobysheva, N. V. Samuilov, V. D. |
description | Chitosan, CN
−
, or H
2
O
2
caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H
2
O
2
, or chitosan + H
2
O
2
on EC. H
2
O
2
formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN
−
and the protonophoric uncoupler carbonyl cyanide
m
-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN
−
-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN
−
-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H
2
O
2
on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H
2
O
2
as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane. |
doi_str_mv | 10.1134/S0006297909090120 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734143314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734143314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</originalsourceid><addsrcrecordid>eNp1UE1LxDAQDaK4a_UHeJHixVM1k6TJ5ijFL1jwoJ5Dmia7XfqxJu3Bf2_qLiwoEoaZ8N68eTyELgHfAlB294Yx5kQKiacHBB-hOXC8yChm-BjNJzib8Bk6C2ETvwRLeopmICVwCfkc4WJdD33QXVZ31WhslW59v_K6beNobNOkldXDOq27dNvobgjn6MTpJtiLfU_Qx-PDe_GcLV-fXor7ZWaowEPmclFqWYIxmFBi8wWUOuc0FyR2JyriAHjJuTGCCK6N02ArSxzTzDFOLU3QzU43-vkcbRhUW4fJkO5sPwYlKANGaawEXf9ibvrRd9Gciqep_KkEwY5kfB-Ct05tfd1q_6UAqylM9SfMuHO1Fx7LGMdhY59eJJAdIUSoW1l_uPy_6jcZTHyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232393239</pqid></control><display><type>article</type><title>Chitosan-induced programmed cell death in plants</title><source>Springer Link</source><creator>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</creator><creatorcontrib>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</creatorcontrib><description>Chitosan, CN
−
, or H
2
O
2
caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H
2
O
2
, or chitosan + H
2
O
2
on EC. H
2
O
2
formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN
−
and the protonophoric uncoupler carbonyl cyanide
m
-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN
−
-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN
−
-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H
2
O
2
on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H
2
O
2
as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</description><identifier>ISSN: 0006-2979</identifier><identifier>EISSN: 1608-3040</identifier><identifier>DOI: 10.1134/S0006297909090120</identifier><identifier>PMID: 19916915</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Anaerobic conditions ; Apoptosis - drug effects ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bioorganic Chemistry ; Botany ; Carbonyl compounds ; Cell death ; Cellular biology ; Chitosan - pharmacology ; Chromatin ; Deoxyribonucleic acid ; DNA ; DNA, Plant ; Epidermis ; Fluoresceins - chemistry ; Hydrogen peroxide ; Legumes ; Life Sciences ; Microbiology ; Mortality ; Pisum sativum - cytology ; Pisum sativum - genetics ; Protein synthesis ; Spectrometry, Fluorescence</subject><ispartof>Biochemistry (Moscow), 2009-09, Vol.74 (9), p.1035-1043</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</citedby><cites>FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19916915$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasil’ev, L. A.</creatorcontrib><creatorcontrib>Dzyubinskaya, E. V.</creatorcontrib><creatorcontrib>Zinovkin, R. A.</creatorcontrib><creatorcontrib>Kiselevsky, D. B.</creatorcontrib><creatorcontrib>Lobysheva, N. V.</creatorcontrib><creatorcontrib>Samuilov, V. D.</creatorcontrib><title>Chitosan-induced programmed cell death in plants</title><title>Biochemistry (Moscow)</title><addtitle>Biochemistry Moscow</addtitle><addtitle>Biochemistry (Mosc)</addtitle><description>Chitosan, CN
−
, or H
2
O
2
caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H
2
O
2
, or chitosan + H
2
O
2
on EC. H
2
O
2
formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN
−
and the protonophoric uncoupler carbonyl cyanide
m
-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN
−
-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN
−
-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H
2
O
2
on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H
2
O
2
as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</description><subject>Anaerobic conditions</subject><subject>Apoptosis - drug effects</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bioorganic Chemistry</subject><subject>Botany</subject><subject>Carbonyl compounds</subject><subject>Cell death</subject><subject>Cellular biology</subject><subject>Chitosan - pharmacology</subject><subject>Chromatin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA, Plant</subject><subject>Epidermis</subject><subject>Fluoresceins - chemistry</subject><subject>Hydrogen peroxide</subject><subject>Legumes</subject><subject>Life Sciences</subject><subject>Microbiology</subject><subject>Mortality</subject><subject>Pisum sativum - cytology</subject><subject>Pisum sativum - genetics</subject><subject>Protein synthesis</subject><subject>Spectrometry, Fluorescence</subject><issn>0006-2979</issn><issn>1608-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LxDAQDaK4a_UHeJHixVM1k6TJ5ijFL1jwoJ5Dmia7XfqxJu3Bf2_qLiwoEoaZ8N68eTyELgHfAlB294Yx5kQKiacHBB-hOXC8yChm-BjNJzib8Bk6C2ETvwRLeopmICVwCfkc4WJdD33QXVZ31WhslW59v_K6beNobNOkldXDOq27dNvobgjn6MTpJtiLfU_Qx-PDe_GcLV-fXor7ZWaowEPmclFqWYIxmFBi8wWUOuc0FyR2JyriAHjJuTGCCK6N02ArSxzTzDFOLU3QzU43-vkcbRhUW4fJkO5sPwYlKANGaawEXf9ibvrRd9Gciqep_KkEwY5kfB-Ct05tfd1q_6UAqylM9SfMuHO1Fx7LGMdhY59eJJAdIUSoW1l_uPy_6jcZTHyE</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Vasil’ev, L. A.</creator><creator>Dzyubinskaya, E. V.</creator><creator>Zinovkin, R. A.</creator><creator>Kiselevsky, D. B.</creator><creator>Lobysheva, N. V.</creator><creator>Samuilov, V. D.</creator><general>SP MAIK Nauka/Interperiodica</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20090901</creationdate><title>Chitosan-induced programmed cell death in plants</title><author>Vasil’ev, L. A. ; Dzyubinskaya, E. V. ; Zinovkin, R. A. ; Kiselevsky, D. B. ; Lobysheva, N. V. ; Samuilov, V. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anaerobic conditions</topic><topic>Apoptosis - drug effects</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bioorganic Chemistry</topic><topic>Botany</topic><topic>Carbonyl compounds</topic><topic>Cell death</topic><topic>Cellular biology</topic><topic>Chitosan - pharmacology</topic><topic>Chromatin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA, Plant</topic><topic>Epidermis</topic><topic>Fluoresceins - chemistry</topic><topic>Hydrogen peroxide</topic><topic>Legumes</topic><topic>Life Sciences</topic><topic>Microbiology</topic><topic>Mortality</topic><topic>Pisum sativum - cytology</topic><topic>Pisum sativum - genetics</topic><topic>Protein synthesis</topic><topic>Spectrometry, Fluorescence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’ev, L. A.</creatorcontrib><creatorcontrib>Dzyubinskaya, E. V.</creatorcontrib><creatorcontrib>Zinovkin, R. A.</creatorcontrib><creatorcontrib>Kiselevsky, D. B.</creatorcontrib><creatorcontrib>Lobysheva, N. V.</creatorcontrib><creatorcontrib>Samuilov, V. D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Moscow)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’ev, L. A.</au><au>Dzyubinskaya, E. V.</au><au>Zinovkin, R. A.</au><au>Kiselevsky, D. B.</au><au>Lobysheva, N. V.</au><au>Samuilov, V. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chitosan-induced programmed cell death in plants</atitle><jtitle>Biochemistry (Moscow)</jtitle><stitle>Biochemistry Moscow</stitle><addtitle>Biochemistry (Mosc)</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>74</volume><issue>9</issue><spage>1035</spage><epage>1043</epage><pages>1035-1043</pages><issn>0006-2979</issn><eissn>1608-3040</eissn><abstract>Chitosan, CN
−
, or H
2
O
2
caused the death of epidermal cells (EC) in the epidermis of pea leaves that was detected by monitoring the destruction of cell nuclei; chitosan induced chromatin condensation and marginalization followed by the destruction of EC nuclei and subsequent internucleosomal DNA fragmentation. Chitosan did not affect stoma guard cells (GC). Anaerobic conditions prevented the chitosan-induced destruction of EC nuclei. The antioxidants nitroblue tetrazolium or mannitol suppressed the effects of chitosan, H
2
O
2
, or chitosan + H
2
O
2
on EC. H
2
O
2
formation in EC and GC mitochondria that was determined from 2′,7′-dichlorofluorescein fluorescence was inhibited by CN
−
and the protonophoric uncoupler carbonyl cyanide
m
-chlorophenylhydrazone but was stimulated by these agents in GC chloroplasts. The alternative oxidase inhibitors propyl gallate and salicylhydroxamate prevented chitosan- but not CN
−
-induced destruction of EC nuclei; the plasma membrane NADPH oxidase inhibitors diphenylene iodonium and quinacrine abolished chitosan- but not CN
−
-induced destruction of EC nuclei. The mitochondrial protein synthesis inhibitor lincomycin removed the destructive effect of chitosan or H
2
O
2
on EC nuclei. The effect of cycloheximide, an inhibitor of protein synthesis in the cytoplasm, was insignificant; however, it was enhanced if cycloheximide was added in combination with lincomycin. The autophagy inhibitor 3-methyladenine removed the chitosan effect but exerted no influence on the effect of H
2
O
2
as an inducer of EC death. The internucleosome DNA fragmentation in conjunction with the data on the 3-methyladenine effect provides evidence that chitosan induces programmed cell death that follows a combined scenario including apoptosis and autophagy. Based on the results of an inhibitor assay, chitosan-induced EC death involves reactive oxygen species generated by the NADPH oxidase of the plasma membrane.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><pmid>19916915</pmid><doi>10.1134/S0006297909090120</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2979 |
ispartof | Biochemistry (Moscow), 2009-09, Vol.74 (9), p.1035-1043 |
issn | 0006-2979 1608-3040 |
language | eng |
recordid | cdi_proquest_miscellaneous_734143314 |
source | Springer Link |
subjects | Anaerobic conditions Apoptosis - drug effects Biochemistry Biomedical and Life Sciences Biomedicine Bioorganic Chemistry Botany Carbonyl compounds Cell death Cellular biology Chitosan - pharmacology Chromatin Deoxyribonucleic acid DNA DNA, Plant Epidermis Fluoresceins - chemistry Hydrogen peroxide Legumes Life Sciences Microbiology Mortality Pisum sativum - cytology Pisum sativum - genetics Protein synthesis Spectrometry, Fluorescence |
title | Chitosan-induced programmed cell death in plants |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A04%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chitosan-induced%20programmed%20cell%20death%20in%20plants&rft.jtitle=Biochemistry%20(Moscow)&rft.au=Vasil%E2%80%99ev,%20L.%20A.&rft.date=2009-09-01&rft.volume=74&rft.issue=9&rft.spage=1035&rft.epage=1043&rft.pages=1035-1043&rft.issn=0006-2979&rft.eissn=1608-3040&rft_id=info:doi/10.1134/S0006297909090120&rft_dat=%3Cproquest_cross%3E734143314%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-f57ba9b1cc0232e581ba563572ba5f7d2f116b66cc7276acfa1ede2f4a4f463e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232393239&rft_id=info:pmid/19916915&rfr_iscdi=true |