Loading…
Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water
The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freed...
Saved in:
Published in: | The Journal of chemical physics 2009-11, Vol.131 (20), p.204505-204505 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923 |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923 |
container_end_page | 204505 |
container_issue | 20 |
container_start_page | 204505 |
container_title | The Journal of chemical physics |
container_volume | 131 |
creator | Bastida, Adolfo Zúñiga, José Requena, Alberto Miguel, Beatriz |
description | The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state. |
doi_str_mv | 10.1063/1.3266834 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734165245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734165245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMobk4f_APSN_GhW9I0SfMoQ50w8EWfy216i5G03ZJG3b-3bgPx6cI5Hx_cQ8g1o3NGJV-wOc-kLHh-QqaMFjpVUtNTMqU0Y6mWVE7IRQgflFKmsvycTJjW-chkU2JXu8rbOtlG6IbYLoyDEKwBlwTbRgeD7bukb5LhHZNPW_l9MLYeHXz_ayvs6qSJXQ0tdsOI2C5xdhtH-RcM6C_JWQMu4NXxzsjb48PrcpWuX56el_fr1HBBh1RyAYLmiJoVwBpQ0qBEUReFkLouzP4FVmvFFAMUlAMFgWhUpQrT6IzPyO3Bu_H9NmIYytYGg85Bh30MpeI5kyLLxUjeHUjj-xA8NuXG2xb8rmS0_B22ZOVx2JG9OVpj1WL9Rx6X5D8hnXPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734165245</pqid></control><display><type>article</type><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</creator><creatorcontrib>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</creatorcontrib><description>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3266834</identifier><identifier>PMID: 19947692</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2009-11, Vol.131 (20), p.204505-204505</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</citedby><cites>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,778,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19947692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastida, Adolfo</creatorcontrib><creatorcontrib>Zúñiga, José</creatorcontrib><creatorcontrib>Requena, Alberto</creatorcontrib><creatorcontrib>Miguel, Beatriz</creatorcontrib><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMobk4f_APSN_GhW9I0SfMoQ50w8EWfy216i5G03ZJG3b-3bgPx6cI5Hx_cQ8g1o3NGJV-wOc-kLHh-QqaMFjpVUtNTMqU0Y6mWVE7IRQgflFKmsvycTJjW-chkU2JXu8rbOtlG6IbYLoyDEKwBlwTbRgeD7bukb5LhHZNPW_l9MLYeHXz_ayvs6qSJXQ0tdsOI2C5xdhtH-RcM6C_JWQMu4NXxzsjb48PrcpWuX56el_fr1HBBh1RyAYLmiJoVwBpQ0qBEUReFkLouzP4FVmvFFAMUlAMFgWhUpQrT6IzPyO3Bu_H9NmIYytYGg85Bh30MpeI5kyLLxUjeHUjj-xA8NuXG2xb8rmS0_B22ZOVx2JG9OVpj1WL9Rx6X5D8hnXPk</recordid><startdate>20091128</startdate><enddate>20091128</enddate><creator>Bastida, Adolfo</creator><creator>Zúñiga, José</creator><creator>Requena, Alberto</creator><creator>Miguel, Beatriz</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091128</creationdate><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><author>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastida, Adolfo</creatorcontrib><creatorcontrib>Zúñiga, José</creatorcontrib><creatorcontrib>Requena, Alberto</creatorcontrib><creatorcontrib>Miguel, Beatriz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastida, Adolfo</au><au>Zúñiga, José</au><au>Requena, Alberto</au><au>Miguel, Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2009-11-28</date><risdate>2009</risdate><volume>131</volume><issue>20</issue><spage>204505</spage><epage>204505</epage><pages>204505-204505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</abstract><cop>United States</cop><pmid>19947692</pmid><doi>10.1063/1.3266834</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2009-11, Vol.131 (20), p.204505-204505 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_proquest_miscellaneous_734165245 |
source | American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
title | Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum/classical%20simulation%20of%20the%20vibrational%20relaxation%20of%20the%20bend%20fundamental%20in%20liquid%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bastida,%20Adolfo&rft.date=2009-11-28&rft.volume=131&rft.issue=20&rft.spage=204505&rft.epage=204505&rft.pages=204505-204505&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3266834&rft_dat=%3Cproquest_cross%3E734165245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734165245&rft_id=info:pmid/19947692&rfr_iscdi=true |