Loading…

Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water

The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freed...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2009-11, Vol.131 (20), p.204505-204505
Main Authors: Bastida, Adolfo, Zúñiga, José, Requena, Alberto, Miguel, Beatriz
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923
cites cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923
container_end_page 204505
container_issue 20
container_start_page 204505
container_title The Journal of chemical physics
container_volume 131
creator Bastida, Adolfo
Zúñiga, José
Requena, Alberto
Miguel, Beatriz
description The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.
doi_str_mv 10.1063/1.3266834
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734165245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>734165245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</originalsourceid><addsrcrecordid>eNpVkFFLwzAUhYMobk4f_APSN_GhW9I0SfMoQ50w8EWfy216i5G03ZJG3b-3bgPx6cI5Hx_cQ8g1o3NGJV-wOc-kLHh-QqaMFjpVUtNTMqU0Y6mWVE7IRQgflFKmsvycTJjW-chkU2JXu8rbOtlG6IbYLoyDEKwBlwTbRgeD7bukb5LhHZNPW_l9MLYeHXz_ayvs6qSJXQ0tdsOI2C5xdhtH-RcM6C_JWQMu4NXxzsjb48PrcpWuX56el_fr1HBBh1RyAYLmiJoVwBpQ0qBEUReFkLouzP4FVmvFFAMUlAMFgWhUpQrT6IzPyO3Bu_H9NmIYytYGg85Bh30MpeI5kyLLxUjeHUjj-xA8NuXG2xb8rmS0_B22ZOVx2JG9OVpj1WL9Rx6X5D8hnXPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734165245</pqid></control><display><type>article</type><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><source>American Institute of Physics (AIP) Publications</source><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</creator><creatorcontrib>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</creatorcontrib><description>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.3266834</identifier><identifier>PMID: 19947692</identifier><language>eng</language><publisher>United States</publisher><ispartof>The Journal of chemical physics, 2009-11, Vol.131 (20), p.204505-204505</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</citedby><cites>FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,778,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19947692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bastida, Adolfo</creatorcontrib><creatorcontrib>Zúñiga, José</creatorcontrib><creatorcontrib>Requena, Alberto</creatorcontrib><creatorcontrib>Miguel, Beatriz</creatorcontrib><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</description><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVkFFLwzAUhYMobk4f_APSN_GhW9I0SfMoQ50w8EWfy216i5G03ZJG3b-3bgPx6cI5Hx_cQ8g1o3NGJV-wOc-kLHh-QqaMFjpVUtNTMqU0Y6mWVE7IRQgflFKmsvycTJjW-chkU2JXu8rbOtlG6IbYLoyDEKwBlwTbRgeD7bukb5LhHZNPW_l9MLYeHXz_ayvs6qSJXQ0tdsOI2C5xdhtH-RcM6C_JWQMu4NXxzsjb48PrcpWuX56el_fr1HBBh1RyAYLmiJoVwBpQ0qBEUReFkLouzP4FVmvFFAMUlAMFgWhUpQrT6IzPyO3Bu_H9NmIYytYGg85Bh30MpeI5kyLLxUjeHUjj-xA8NuXG2xb8rmS0_B22ZOVx2JG9OVpj1WL9Rx6X5D8hnXPk</recordid><startdate>20091128</startdate><enddate>20091128</enddate><creator>Bastida, Adolfo</creator><creator>Zúñiga, José</creator><creator>Requena, Alberto</creator><creator>Miguel, Beatriz</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091128</creationdate><title>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</title><author>Bastida, Adolfo ; Zúñiga, José ; Requena, Alberto ; Miguel, Beatriz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bastida, Adolfo</creatorcontrib><creatorcontrib>Zúñiga, José</creatorcontrib><creatorcontrib>Requena, Alberto</creatorcontrib><creatorcontrib>Miguel, Beatriz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bastida, Adolfo</au><au>Zúñiga, José</au><au>Requena, Alberto</au><au>Miguel, Beatriz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2009-11-28</date><risdate>2009</risdate><volume>131</volume><issue>20</issue><spage>204505</spage><epage>204505</epage><pages>204505-204505</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>The Ehrenfest method with quantum corrections is used to describe the vibrational relaxation of the bend fundamental in liquid water. All the vibrational degrees of freedom of the water molecules are described using quantum mechanics, while the remaining translational and rotational degrees of freedom are described classically. The relaxation time obtained compares well with experiment and with relaxation times calculated using other theoretical approximations. The presence of resonant intermolecular vibrational energy (VV) transfer is established with a maximum percentage of excited molecules, different from the initial one, of 9.2%. It is found through an effective kinetic fit that two VV transfers occur before relaxation of water to the vibrational ground state.</abstract><cop>United States</cop><pmid>19947692</pmid><doi>10.1063/1.3266834</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2009-11, Vol.131 (20), p.204505-204505
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_734165245
source American Institute of Physics (AIP) Publications; American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
title Hybrid quantum/classical simulation of the vibrational relaxation of the bend fundamental in liquid water
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20quantum/classical%20simulation%20of%20the%20vibrational%20relaxation%20of%20the%20bend%20fundamental%20in%20liquid%20water&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bastida,%20Adolfo&rft.date=2009-11-28&rft.volume=131&rft.issue=20&rft.spage=204505&rft.epage=204505&rft.pages=204505-204505&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.3266834&rft_dat=%3Cproquest_cross%3E734165245%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-635a504ee918a1fa76ce6e5d88569d8c017241d97171ae503a0a5eec7b78cf923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=734165245&rft_id=info:pmid/19947692&rfr_iscdi=true