Loading…

Identification and Characterization of Novel Rat and Human Gonad-Specific Organic Anion Transporters

We have isolated three novel organic anion transporter cDNAs designated rat GST-1 (gonad-specific transporter), rat GST-2, and human GST, expressed at high levels in the testis. Rat GST-1, GST-2, and human GST consist of 748, 702, and 719 amino acids, respectively, and all molecules possess the 12 p...

Full description

Saved in:
Bibliographic Details
Published in:Molecular endocrinology (Baltimore, Md.) Md.), 2003-07, Vol.17 (7), p.1203-1215
Main Authors: Suzuki, Takehiro, Onogawa, Tohru, Asano, Naoki, Mizutamari, Hiroya, Mikkaichi, Tsuyoshi, Tanemoto, Masayuki, Abe, Michiaki, Satoh, Fumitoshi, Unno, Michiaki, Nunoki, Kazuo, Suzuki, Masanori, Hishinuma, Takanori, Goto, Junichi, Shimosegawa, Tooru, Matsuno, Seiki, Ito, Sadayoshi, Abe, Takaaki
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have isolated three novel organic anion transporter cDNAs designated rat GST-1 (gonad-specific transporter), rat GST-2, and human GST, expressed at high levels in the testis. Rat GST-1, GST-2, and human GST consist of 748, 702, and 719 amino acids, respectively, and all molecules possess the 12 predicted transmembrane domains, which is a common structure of organic anion transporters. Northern blot analyses and in situ hybridization revealed that both of the rat molecules are highly expressed in the testis, especially in Sertoli cells, spermatogonia, and Leydig cells. Weak signals are also detected in the epididymis and ovary in adult rat. The exclusive expression of human GST mRNA in the testis was confirmed by RT-PCR. The pharmacological experiments of Xenopus laevis oocytes injected with the respective rat GST-1- and GST-2-cRNAs revealed that both rat GST-1 and GST-2 transport taurocholic acid, dehydroepiandrosterone sulfate, and T4 with Michaelis-Menten kinetics (taurocholic acid, Km = 8.9 and 2.5 μm, dehydroepiandrosterone sulfate, Km = 25.5 and 21.μm, and T4, Km = 6.4 and 5.8 for rat GST-1 and GST-2, respectively). T3 was also transported by rat GST-1 and GST-2. These data suggest that rat GST-1 and GST-2 might be one of the molecular entities responsible for transporting dehydroepiandrosterone sulfate and thyroid hormones involved in the regulation of sex steroid transportation and spermatogenesis in the gonad.
ISSN:0888-8809
1944-9917
DOI:10.1210/me.2002-0304