Loading…
Temporal characterization of mid-IR free-electron-laser pulses by frequency-resolved optical gating
We performed what we believe are the first practical full-temporal-characterization measurements of ultrashort pulses from a free-electron laser (FEL). Second-harmonic-generation frequency-resolved optical gating (FROG) was used to measure a train of mid-IR pulses distorted by a saturated water-vapo...
Saved in:
Published in: | Optics letters 1997-05, Vol.22 (10), p.721-723 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We performed what we believe are the first practical full-temporal-characterization measurements of ultrashort pulses from a free-electron laser (FEL). Second-harmonic-generation frequency-resolved optical gating (FROG) was used to measure a train of mid-IR pulses distorted by a saturated water-vapor absorption line and showing free-induction decay. The measured direction of time was unambiguous because of prior knowledge regarding free-induction decay. These measurements require only 10% of the power of the laser beam and demonstrate that FROG can be implemented as a pulse diagnostic simultaneously with other experiments on a FEL. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/ol.22.000721 |