Loading…
Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin
Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydratio...
Saved in:
Published in: | Endocrinology (Philadelphia) 2010-01, Vol.151 (1), p.165-173 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323 |
container_end_page | 173 |
container_issue | 1 |
container_start_page | 165 |
container_title | Endocrinology (Philadelphia) |
container_volume | 151 |
creator | Ogushi, Yuji Akabane, Gen Hasegawa, Takahiro Mochida, Hiroshi Matsuda, Manabu Suzuki, Masakazu Tanaka, Shigeyasu |
description | Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments.
Adaptation in different water environments of anuran amphibians is brought by molecular diversity of aquaporin, a water channel, expressed in the ventral pelvic skin. |
doi_str_mv | 10.1210/en.2009-0841 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734205600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1210/en.2009-0841</oup_id><sourcerecordid>3130608995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323</originalsourceid><addsrcrecordid>eNp1kE2LFDEQhoMo7uzqzbM0iHix18rXJO1tWNcPWFFQ8Rhquqs1S0_Sm3QL8-_NMI0DoqdKioeqeh_GnnC45ILDKwqXAqCpwSp-j614o3RtuIH7bAXAZW2EMGfsPOfb8lVKyYfsjDdWK7s2K_b5O06Uqk2H44STj6H6MqXS-rGvfKg2YU5Yym786bceQ35dfYwDtfOAqXrjf1HKftpXsa82dzOOMfnwiD3occj0eKkX7Nvb669X7-ubT-8-XG1u6lYLO9WWo22RyEBvGsmNLI-1ajQaJCu3QFqrVqNEaW1vO-AdCBLUKwN220shL9iL49wxxbuZ8uR2Prc0DBgoztkZqQToNUAhn_1F3sY5hXKck1zCGmzT6EK9PFJtijkn6t2Y_A7T3nFwB9GOgjuIdgfRBX-6DJ23O-pO8GK2AM8XAHOLQ188tj7_4YSQsoTWpxxxHv-3sl5WyiNJoYttUU1jopxPaf556G_q76FO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130608995</pqid></control><display><type>article</type><title>Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin</title><source>Oxford Journals Online</source><creator>Ogushi, Yuji ; Akabane, Gen ; Hasegawa, Takahiro ; Mochida, Hiroshi ; Matsuda, Manabu ; Suzuki, Masakazu ; Tanaka, Shigeyasu</creator><creatorcontrib>Ogushi, Yuji ; Akabane, Gen ; Hasegawa, Takahiro ; Mochida, Hiroshi ; Matsuda, Manabu ; Suzuki, Masakazu ; Tanaka, Shigeyasu</creatorcontrib><description>Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments.
Adaptation in different water environments of anuran amphibians is brought by molecular diversity of aquaporin, a water channel, expressed in the ventral pelvic skin.</description><identifier>ISSN: 0013-7227</identifier><identifier>EISSN: 1945-7170</identifier><identifier>DOI: 10.1210/en.2009-0841</identifier><identifier>PMID: 19854867</identifier><identifier>CODEN: ENDOAO</identifier><language>eng</language><publisher>Chevy Chase, MD: Endocrine Society</publisher><subject>Adaptation ; Adaptation, Biological - drug effects ; Adaptation, Biological - genetics ; Amino Acid Sequence ; Amphibians ; Animals ; Antidiuretics ; Anura - genetics ; Anura - metabolism ; Anura - physiology ; Aquaporins ; Aquaporins - genetics ; Aquaporins - metabolism ; Aquaporins - physiology ; Biological and medical sciences ; Bladder ; Ecological adaptation ; Ecosystem ; Environmental regulations ; Female ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation - drug effects ; Gene regulation ; Genetic Variation - physiology ; Homeostasis ; Male ; Molecular Sequence Data ; Nucleotides ; Post-transcription ; Protein structure ; Proteins ; Reabsorption ; Rehydration ; Sequence Homology, Amino Acid ; Shallow water ; Skin ; Species Specificity ; Urinary bladder ; Urinary Bladder - metabolism ; Urine ; Vertebrates: endocrinology ; Water - metabolism ; Water - pharmacology ; Water absorption ; Water-Electrolyte Balance - drug effects ; Water-Electrolyte Balance - genetics</subject><ispartof>Endocrinology (Philadelphia), 2010-01, Vol.151 (1), p.165-173</ispartof><rights>Copyright © 2010 by The Endocrine Society 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010 by The Endocrine Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323</citedby><cites>FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22337375$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19854867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ogushi, Yuji</creatorcontrib><creatorcontrib>Akabane, Gen</creatorcontrib><creatorcontrib>Hasegawa, Takahiro</creatorcontrib><creatorcontrib>Mochida, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Manabu</creatorcontrib><creatorcontrib>Suzuki, Masakazu</creatorcontrib><creatorcontrib>Tanaka, Shigeyasu</creatorcontrib><title>Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin</title><title>Endocrinology (Philadelphia)</title><addtitle>Endocrinology</addtitle><description>Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments.
Adaptation in different water environments of anuran amphibians is brought by molecular diversity of aquaporin, a water channel, expressed in the ventral pelvic skin.</description><subject>Adaptation</subject><subject>Adaptation, Biological - drug effects</subject><subject>Adaptation, Biological - genetics</subject><subject>Amino Acid Sequence</subject><subject>Amphibians</subject><subject>Animals</subject><subject>Antidiuretics</subject><subject>Anura - genetics</subject><subject>Anura - metabolism</subject><subject>Anura - physiology</subject><subject>Aquaporins</subject><subject>Aquaporins - genetics</subject><subject>Aquaporins - metabolism</subject><subject>Aquaporins - physiology</subject><subject>Biological and medical sciences</subject><subject>Bladder</subject><subject>Ecological adaptation</subject><subject>Ecosystem</subject><subject>Environmental regulations</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene regulation</subject><subject>Genetic Variation - physiology</subject><subject>Homeostasis</subject><subject>Male</subject><subject>Molecular Sequence Data</subject><subject>Nucleotides</subject><subject>Post-transcription</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Reabsorption</subject><subject>Rehydration</subject><subject>Sequence Homology, Amino Acid</subject><subject>Shallow water</subject><subject>Skin</subject><subject>Species Specificity</subject><subject>Urinary bladder</subject><subject>Urinary Bladder - metabolism</subject><subject>Urine</subject><subject>Vertebrates: endocrinology</subject><subject>Water - metabolism</subject><subject>Water - pharmacology</subject><subject>Water absorption</subject><subject>Water-Electrolyte Balance - drug effects</subject><subject>Water-Electrolyte Balance - genetics</subject><issn>0013-7227</issn><issn>1945-7170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE2LFDEQhoMo7uzqzbM0iHix18rXJO1tWNcPWFFQ8Rhquqs1S0_Sm3QL8-_NMI0DoqdKioeqeh_GnnC45ILDKwqXAqCpwSp-j614o3RtuIH7bAXAZW2EMGfsPOfb8lVKyYfsjDdWK7s2K_b5O06Uqk2H44STj6H6MqXS-rGvfKg2YU5Yym786bceQ35dfYwDtfOAqXrjf1HKftpXsa82dzOOMfnwiD3occj0eKkX7Nvb669X7-ubT-8-XG1u6lYLO9WWo22RyEBvGsmNLI-1ajQaJCu3QFqrVqNEaW1vO-AdCBLUKwN220shL9iL49wxxbuZ8uR2Prc0DBgoztkZqQToNUAhn_1F3sY5hXKck1zCGmzT6EK9PFJtijkn6t2Y_A7T3nFwB9GOgjuIdgfRBX-6DJ23O-pO8GK2AM8XAHOLQ188tj7_4YSQsoTWpxxxHv-3sl5WyiNJoYttUU1jopxPaf556G_q76FO</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Ogushi, Yuji</creator><creator>Akabane, Gen</creator><creator>Hasegawa, Takahiro</creator><creator>Mochida, Hiroshi</creator><creator>Matsuda, Manabu</creator><creator>Suzuki, Masakazu</creator><creator>Tanaka, Shigeyasu</creator><general>Endocrine Society</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201001</creationdate><title>Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin</title><author>Ogushi, Yuji ; Akabane, Gen ; Hasegawa, Takahiro ; Mochida, Hiroshi ; Matsuda, Manabu ; Suzuki, Masakazu ; Tanaka, Shigeyasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation</topic><topic>Adaptation, Biological - drug effects</topic><topic>Adaptation, Biological - genetics</topic><topic>Amino Acid Sequence</topic><topic>Amphibians</topic><topic>Animals</topic><topic>Antidiuretics</topic><topic>Anura - genetics</topic><topic>Anura - metabolism</topic><topic>Anura - physiology</topic><topic>Aquaporins</topic><topic>Aquaporins - genetics</topic><topic>Aquaporins - metabolism</topic><topic>Aquaporins - physiology</topic><topic>Biological and medical sciences</topic><topic>Bladder</topic><topic>Ecological adaptation</topic><topic>Ecosystem</topic><topic>Environmental regulations</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene regulation</topic><topic>Genetic Variation - physiology</topic><topic>Homeostasis</topic><topic>Male</topic><topic>Molecular Sequence Data</topic><topic>Nucleotides</topic><topic>Post-transcription</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Reabsorption</topic><topic>Rehydration</topic><topic>Sequence Homology, Amino Acid</topic><topic>Shallow water</topic><topic>Skin</topic><topic>Species Specificity</topic><topic>Urinary bladder</topic><topic>Urinary Bladder - metabolism</topic><topic>Urine</topic><topic>Vertebrates: endocrinology</topic><topic>Water - metabolism</topic><topic>Water - pharmacology</topic><topic>Water absorption</topic><topic>Water-Electrolyte Balance - drug effects</topic><topic>Water-Electrolyte Balance - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ogushi, Yuji</creatorcontrib><creatorcontrib>Akabane, Gen</creatorcontrib><creatorcontrib>Hasegawa, Takahiro</creatorcontrib><creatorcontrib>Mochida, Hiroshi</creatorcontrib><creatorcontrib>Matsuda, Manabu</creatorcontrib><creatorcontrib>Suzuki, Masakazu</creatorcontrib><creatorcontrib>Tanaka, Shigeyasu</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Endocrinology (Philadelphia)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ogushi, Yuji</au><au>Akabane, Gen</au><au>Hasegawa, Takahiro</au><au>Mochida, Hiroshi</au><au>Matsuda, Manabu</au><au>Suzuki, Masakazu</au><au>Tanaka, Shigeyasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin</atitle><jtitle>Endocrinology (Philadelphia)</jtitle><addtitle>Endocrinology</addtitle><date>2010-01</date><risdate>2010</risdate><volume>151</volume><issue>1</issue><spage>165</spage><epage>173</epage><pages>165-173</pages><issn>0013-7227</issn><eissn>1945-7170</eissn><coden>ENDOAO</coden><abstract>Most adult anuran amphibians except for the aquatic species absorb water across the ventral pelvic skin and reabsorb it from urine in the urinary bladder. Many terrestrial and arboreal species use a region in the posterior or pelvic region of the ventral skin that is specialized for rapid rehydration from shallow water sources or moist substrates. Periods of terrestrial activity can be prolonged by reabsorption of dilute urine from the urinary bladder. Aquaporin (AQP), a water channel protein, plays a fundamental role in these water absorption/reabsorption processes, which are regulated by antidiuretic hormone. Characterization of AQPs from various anurans revealed that the unique water homeostasis is basically mediated by two types of anuran-specific AQPs, i.e. ventral pelvic skin and urinary bladder type, respectively. The bladder-type AQP is further expressed in the pelvic skin of terrestrial and arboreal species, together with the pelvic skin-type AQP. In contrast, the pelvic skin-type AQP (AQP-x3) of the aquatic Xenopus has lost the ability of efficient protein production. The extra C-terminal tail in AQP-x3 consisting of 33 nucleotides within the coding region appears to participate in the posttranscriptional regulation of AQP-x3 gene expression by attenuating protein expression. The positive transcriptional regulation of bladder-type AQP in the pelvic skin and negative posttranscriptional regulation of pelvic skin-type AQP provide flexibility in the water regulation mechanisms, which might have contributed to the evolutionary adaptation of anurans to a wide variety of water environments.
Adaptation in different water environments of anuran amphibians is brought by molecular diversity of aquaporin, a water channel, expressed in the ventral pelvic skin.</abstract><cop>Chevy Chase, MD</cop><pub>Endocrine Society</pub><pmid>19854867</pmid><doi>10.1210/en.2009-0841</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-7227 |
ispartof | Endocrinology (Philadelphia), 2010-01, Vol.151 (1), p.165-173 |
issn | 0013-7227 1945-7170 |
language | eng |
recordid | cdi_proquest_miscellaneous_734205600 |
source | Oxford Journals Online |
subjects | Adaptation Adaptation, Biological - drug effects Adaptation, Biological - genetics Amino Acid Sequence Amphibians Animals Antidiuretics Anura - genetics Anura - metabolism Anura - physiology Aquaporins Aquaporins - genetics Aquaporins - metabolism Aquaporins - physiology Biological and medical sciences Bladder Ecological adaptation Ecosystem Environmental regulations Female Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation - drug effects Gene regulation Genetic Variation - physiology Homeostasis Male Molecular Sequence Data Nucleotides Post-transcription Protein structure Proteins Reabsorption Rehydration Sequence Homology, Amino Acid Shallow water Skin Species Specificity Urinary bladder Urinary Bladder - metabolism Urine Vertebrates: endocrinology Water - metabolism Water - pharmacology Water absorption Water-Electrolyte Balance - drug effects Water-Electrolyte Balance - genetics |
title | Water Adaptation Strategy in Anuran Amphibians: Molecular Diversity of Aquaporin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20Adaptation%20Strategy%20in%20Anuran%20Amphibians:%20Molecular%20Diversity%20of%20Aquaporin&rft.jtitle=Endocrinology%20(Philadelphia)&rft.au=Ogushi,%20Yuji&rft.date=2010-01&rft.volume=151&rft.issue=1&rft.spage=165&rft.epage=173&rft.pages=165-173&rft.issn=0013-7227&rft.eissn=1945-7170&rft.coden=ENDOAO&rft_id=info:doi/10.1210/en.2009-0841&rft_dat=%3Cproquest_cross%3E3130608995%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-81a8caee70f79317370f6495a7ae83b0e554c5a3a388f8d01d02e2ef4708bf323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3130608995&rft_id=info:pmid/19854867&rft_oup_id=10.1210/en.2009-0841&rfr_iscdi=true |