Loading…

Development of calcareous skeletal elements in invertebrates

Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in inverteb...

Full description

Saved in:
Bibliographic Details
Published in:Differentiation (London) 2003-06, Vol.71 (4), p.237-250
Main Authors: Wilt, Fred H., Killian, Christopher E., Livingston, Brian T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003
cites cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003
container_end_page 250
container_issue 4
container_start_page 237
container_title Differentiation (London)
container_volume 71
creator Wilt, Fred H.
Killian, Christopher E.
Livingston, Brian T.
description Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?
doi_str_mv 10.1046/j.1432-0436.2003.7104501.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73421743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301468109603558</els_id><sourcerecordid>19247141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</originalsourceid><addsrcrecordid>eNqVkU1LxDAQhoMoun78BSmC3lozSZpuxYvs-gWCFz2HNDuBrN12Tbrr-u9N2aJHFQLDZJ55M_OGkDOgGVAhL-cZCM5SKrjMGKU8K-J1TiHb7JDRd2mXjCinkAo5hgNyGMKcUjqWDPbJAbAx44zlI3I9xTXW7XKBTZe0NjG6NtpjuwpJeMMaO10nMfTlkLgmnjX6DiuvOwzHZM_qOuDJEI_I693ty-QhfXq-f5zcPKVGlAWk1iJw4CLn41LmHIrcapPnlkPFZSko01WBQlpAFMbGcQ23VTUrrZasKuOCR-Riq7v07fsKQ6cWLhisa930k6qCCwaF4L-CUDJRgIAIXm1B49sQPFq19G6h_acCqnqT1Vz1TqreSdWbrAaT1SY2nw6vrKoFzn5aB1cjcD4AOkRDrdeNceGHyykVRSkjN9lyH67Gz3-MoKaPd32iYhZVplsVjF-wduhVMA4bgzPn0XRq1rq_bPUFiV2t2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19247141</pqid></control><display><type>article</type><title>Development of calcareous skeletal elements in invertebrates</title><source>ScienceDirect Journals</source><creator>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</creator><creatorcontrib>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</creatorcontrib><description>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</description><identifier>ISSN: 0301-4681</identifier><identifier>EISSN: 1432-0436</identifier><identifier>DOI: 10.1046/j.1432-0436.2003.7104501.x</identifier><identifier>PMID: 12823225</identifier><language>eng</language><publisher>Berlin/Wien: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; biomineralization ; carapace ; Cell Differentiation - physiology ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Crustacea ; Deuterostoma ; endoskeleton ; exoskeleton ; exoskeleton, endoskeleton ; Extracellular Matrix Proteins - physiology ; Fundamental and applied biological sciences. Psychology ; Invertebrates - embryology ; Invertebrates - growth &amp; development ; Molecular and cellular biology ; Mollusca ; shell ; skeletogenesis ; Skeleton ; spicule</subject><ispartof>Differentiation (London), 2003-06, Vol.71 (4), p.237-250</ispartof><rights>2003 International Society of Differentiation</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</citedby><cites>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15004796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12823225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Livingston, Brian T.</creatorcontrib><title>Development of calcareous skeletal elements in invertebrates</title><title>Differentiation (London)</title><addtitle>Differentiation</addtitle><description>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>biomineralization</subject><subject>carapace</subject><subject>Cell Differentiation - physiology</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Crustacea</subject><subject>Deuterostoma</subject><subject>endoskeleton</subject><subject>exoskeleton</subject><subject>exoskeleton, endoskeleton</subject><subject>Extracellular Matrix Proteins - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Invertebrates - embryology</subject><subject>Invertebrates - growth &amp; development</subject><subject>Molecular and cellular biology</subject><subject>Mollusca</subject><subject>shell</subject><subject>skeletogenesis</subject><subject>Skeleton</subject><subject>spicule</subject><issn>0301-4681</issn><issn>1432-0436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqVkU1LxDAQhoMoun78BSmC3lozSZpuxYvs-gWCFz2HNDuBrN12Tbrr-u9N2aJHFQLDZJ55M_OGkDOgGVAhL-cZCM5SKrjMGKU8K-J1TiHb7JDRd2mXjCinkAo5hgNyGMKcUjqWDPbJAbAx44zlI3I9xTXW7XKBTZe0NjG6NtpjuwpJeMMaO10nMfTlkLgmnjX6DiuvOwzHZM_qOuDJEI_I693ty-QhfXq-f5zcPKVGlAWk1iJw4CLn41LmHIrcapPnlkPFZSko01WBQlpAFMbGcQ23VTUrrZasKuOCR-Riq7v07fsKQ6cWLhisa930k6qCCwaF4L-CUDJRgIAIXm1B49sQPFq19G6h_acCqnqT1Vz1TqreSdWbrAaT1SY2nw6vrKoFzn5aB1cjcD4AOkRDrdeNceGHyykVRSkjN9lyH67Gz3-MoKaPd32iYhZVplsVjF-wduhVMA4bgzPn0XRq1rq_bPUFiV2t2Q</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Wilt, Fred H.</creator><creator>Killian, Christopher E.</creator><creator>Livingston, Brian T.</creator><general>Elsevier B.V</general><general>Blackwell Wissenschafts‐Verlag</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200306</creationdate><title>Development of calcareous skeletal elements in invertebrates</title><author>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>biomineralization</topic><topic>carapace</topic><topic>Cell Differentiation - physiology</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Crustacea</topic><topic>Deuterostoma</topic><topic>endoskeleton</topic><topic>exoskeleton</topic><topic>exoskeleton, endoskeleton</topic><topic>Extracellular Matrix Proteins - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Invertebrates - embryology</topic><topic>Invertebrates - growth &amp; development</topic><topic>Molecular and cellular biology</topic><topic>Mollusca</topic><topic>shell</topic><topic>skeletogenesis</topic><topic>Skeleton</topic><topic>spicule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Livingston, Brian T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Differentiation (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilt, Fred H.</au><au>Killian, Christopher E.</au><au>Livingston, Brian T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of calcareous skeletal elements in invertebrates</atitle><jtitle>Differentiation (London)</jtitle><addtitle>Differentiation</addtitle><date>2003-06</date><risdate>2003</risdate><volume>71</volume><issue>4</issue><spage>237</spage><epage>250</epage><pages>237-250</pages><issn>0301-4681</issn><eissn>1432-0436</eissn><abstract>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</abstract><cop>Berlin/Wien</cop><pub>Elsevier B.V</pub><pmid>12823225</pmid><doi>10.1046/j.1432-0436.2003.7104501.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0301-4681
ispartof Differentiation (London), 2003-06, Vol.71 (4), p.237-250
issn 0301-4681
1432-0436
language eng
recordid cdi_proquest_miscellaneous_73421743
source ScienceDirect Journals
subjects Animals
Biological and medical sciences
biomineralization
carapace
Cell Differentiation - physiology
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Crustacea
Deuterostoma
endoskeleton
exoskeleton
exoskeleton, endoskeleton
Extracellular Matrix Proteins - physiology
Fundamental and applied biological sciences. Psychology
Invertebrates - embryology
Invertebrates - growth & development
Molecular and cellular biology
Mollusca
shell
skeletogenesis
Skeleton
spicule
title Development of calcareous skeletal elements in invertebrates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20calcareous%20skeletal%20elements%20in%20invertebrates&rft.jtitle=Differentiation%20(London)&rft.au=Wilt,%20Fred%20H.&rft.date=2003-06&rft.volume=71&rft.issue=4&rft.spage=237&rft.epage=250&rft.pages=237-250&rft.issn=0301-4681&rft.eissn=1432-0436&rft_id=info:doi/10.1046/j.1432-0436.2003.7104501.x&rft_dat=%3Cproquest_cross%3E19247141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19247141&rft_id=info:pmid/12823225&rfr_iscdi=true