Loading…
Development of calcareous skeletal elements in invertebrates
Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in inverteb...
Saved in:
Published in: | Differentiation (London) 2003-06, Vol.71 (4), p.237-250 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003 |
---|---|
cites | cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003 |
container_end_page | 250 |
container_issue | 4 |
container_start_page | 237 |
container_title | Differentiation (London) |
container_volume | 71 |
creator | Wilt, Fred H. Killian, Christopher E. Livingston, Brian T. |
description | Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures? |
doi_str_mv | 10.1046/j.1432-0436.2003.7104501.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73421743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0301468109603558</els_id><sourcerecordid>19247141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</originalsourceid><addsrcrecordid>eNqVkU1LxDAQhoMoun78BSmC3lozSZpuxYvs-gWCFz2HNDuBrN12Tbrr-u9N2aJHFQLDZJ55M_OGkDOgGVAhL-cZCM5SKrjMGKU8K-J1TiHb7JDRd2mXjCinkAo5hgNyGMKcUjqWDPbJAbAx44zlI3I9xTXW7XKBTZe0NjG6NtpjuwpJeMMaO10nMfTlkLgmnjX6DiuvOwzHZM_qOuDJEI_I693ty-QhfXq-f5zcPKVGlAWk1iJw4CLn41LmHIrcapPnlkPFZSko01WBQlpAFMbGcQ23VTUrrZasKuOCR-Riq7v07fsKQ6cWLhisa930k6qCCwaF4L-CUDJRgIAIXm1B49sQPFq19G6h_acCqnqT1Vz1TqreSdWbrAaT1SY2nw6vrKoFzn5aB1cjcD4AOkRDrdeNceGHyykVRSkjN9lyH67Gz3-MoKaPd32iYhZVplsVjF-wduhVMA4bgzPn0XRq1rq_bPUFiV2t2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19247141</pqid></control><display><type>article</type><title>Development of calcareous skeletal elements in invertebrates</title><source>ScienceDirect Journals</source><creator>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</creator><creatorcontrib>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</creatorcontrib><description>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</description><identifier>ISSN: 0301-4681</identifier><identifier>EISSN: 1432-0436</identifier><identifier>DOI: 10.1046/j.1432-0436.2003.7104501.x</identifier><identifier>PMID: 12823225</identifier><language>eng</language><publisher>Berlin/Wien: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; biomineralization ; carapace ; Cell Differentiation - physiology ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Crustacea ; Deuterostoma ; endoskeleton ; exoskeleton ; exoskeleton, endoskeleton ; Extracellular Matrix Proteins - physiology ; Fundamental and applied biological sciences. Psychology ; Invertebrates - embryology ; Invertebrates - growth & development ; Molecular and cellular biology ; Mollusca ; shell ; skeletogenesis ; Skeleton ; spicule</subject><ispartof>Differentiation (London), 2003-06, Vol.71 (4), p.237-250</ispartof><rights>2003 International Society of Differentiation</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</citedby><cites>FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15004796$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12823225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Livingston, Brian T.</creatorcontrib><title>Development of calcareous skeletal elements in invertebrates</title><title>Differentiation (London)</title><addtitle>Differentiation</addtitle><description>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>biomineralization</subject><subject>carapace</subject><subject>Cell Differentiation - physiology</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Crustacea</subject><subject>Deuterostoma</subject><subject>endoskeleton</subject><subject>exoskeleton</subject><subject>exoskeleton, endoskeleton</subject><subject>Extracellular Matrix Proteins - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Invertebrates - embryology</subject><subject>Invertebrates - growth & development</subject><subject>Molecular and cellular biology</subject><subject>Mollusca</subject><subject>shell</subject><subject>skeletogenesis</subject><subject>Skeleton</subject><subject>spicule</subject><issn>0301-4681</issn><issn>1432-0436</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqVkU1LxDAQhoMoun78BSmC3lozSZpuxYvs-gWCFz2HNDuBrN12Tbrr-u9N2aJHFQLDZJ55M_OGkDOgGVAhL-cZCM5SKrjMGKU8K-J1TiHb7JDRd2mXjCinkAo5hgNyGMKcUjqWDPbJAbAx44zlI3I9xTXW7XKBTZe0NjG6NtpjuwpJeMMaO10nMfTlkLgmnjX6DiuvOwzHZM_qOuDJEI_I693ty-QhfXq-f5zcPKVGlAWk1iJw4CLn41LmHIrcapPnlkPFZSko01WBQlpAFMbGcQ23VTUrrZasKuOCR-Riq7v07fsKQ6cWLhisa930k6qCCwaF4L-CUDJRgIAIXm1B49sQPFq19G6h_acCqnqT1Vz1TqreSdWbrAaT1SY2nw6vrKoFzn5aB1cjcD4AOkRDrdeNceGHyykVRSkjN9lyH67Gz3-MoKaPd32iYhZVplsVjF-wduhVMA4bgzPn0XRq1rq_bPUFiV2t2Q</recordid><startdate>200306</startdate><enddate>200306</enddate><creator>Wilt, Fred H.</creator><creator>Killian, Christopher E.</creator><creator>Livingston, Brian T.</creator><general>Elsevier B.V</general><general>Blackwell Wissenschafts‐Verlag</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200306</creationdate><title>Development of calcareous skeletal elements in invertebrates</title><author>Wilt, Fred H. ; Killian, Christopher E. ; Livingston, Brian T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>biomineralization</topic><topic>carapace</topic><topic>Cell Differentiation - physiology</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Crustacea</topic><topic>Deuterostoma</topic><topic>endoskeleton</topic><topic>exoskeleton</topic><topic>exoskeleton, endoskeleton</topic><topic>Extracellular Matrix Proteins - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Invertebrates - embryology</topic><topic>Invertebrates - growth & development</topic><topic>Molecular and cellular biology</topic><topic>Mollusca</topic><topic>shell</topic><topic>skeletogenesis</topic><topic>Skeleton</topic><topic>spicule</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilt, Fred H.</creatorcontrib><creatorcontrib>Killian, Christopher E.</creatorcontrib><creatorcontrib>Livingston, Brian T.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Differentiation (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilt, Fred H.</au><au>Killian, Christopher E.</au><au>Livingston, Brian T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of calcareous skeletal elements in invertebrates</atitle><jtitle>Differentiation (London)</jtitle><addtitle>Differentiation</addtitle><date>2003-06</date><risdate>2003</risdate><volume>71</volume><issue>4</issue><spage>237</spage><epage>250</epage><pages>237-250</pages><issn>0301-4681</issn><eissn>1432-0436</eissn><abstract>Most metazoans require skeletal support systems. While the formation of bones and teeth in vertebrates has been well studied, endo- and exoskeleton development of non-vertebrates, especially calcification during terminal differentiation, has been neglected. Biomineralization of skeletons in invertebrates presents interesting research opportunities. We undertake here to survey some of the better understood examples of skeletal development in selected invertebrates. The differentiation of the skeletal spicules of euechinoid larvae and other non-vertebrate deuterostomes, the shells of molluscs, and the calcification of crustacean carapaces are surveyed. The diversity of these different kinds of animals and our present limited understanding make it difficult to identify unifying themes, but there certainly are unifying questions: How is the mineral precursor secreted? What is the nature of the interaction of mineral with the matrix proteins of the skeleton? Is there any conservation of protein domains in matrix proteins found in skeletal elements from different phyla? Are there common strategies in the development of organs that form mineralized structures?</abstract><cop>Berlin/Wien</cop><pub>Elsevier B.V</pub><pmid>12823225</pmid><doi>10.1046/j.1432-0436.2003.7104501.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-4681 |
ispartof | Differentiation (London), 2003-06, Vol.71 (4), p.237-250 |
issn | 0301-4681 1432-0436 |
language | eng |
recordid | cdi_proquest_miscellaneous_73421743 |
source | ScienceDirect Journals |
subjects | Animals Biological and medical sciences biomineralization carapace Cell Differentiation - physiology Cell differentiation, maturation, development, hematopoiesis Cell physiology Crustacea Deuterostoma endoskeleton exoskeleton exoskeleton, endoskeleton Extracellular Matrix Proteins - physiology Fundamental and applied biological sciences. Psychology Invertebrates - embryology Invertebrates - growth & development Molecular and cellular biology Mollusca shell skeletogenesis Skeleton spicule |
title | Development of calcareous skeletal elements in invertebrates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A48%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20calcareous%20skeletal%20elements%20in%20invertebrates&rft.jtitle=Differentiation%20(London)&rft.au=Wilt,%20Fred%20H.&rft.date=2003-06&rft.volume=71&rft.issue=4&rft.spage=237&rft.epage=250&rft.pages=237-250&rft.issn=0301-4681&rft.eissn=1432-0436&rft_id=info:doi/10.1046/j.1432-0436.2003.7104501.x&rft_dat=%3Cproquest_cross%3E19247141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4971-ffe131345389653175fac55f31b369402ab7e46f1ee4cf681c3fbbd9fa62b9003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19247141&rft_id=info:pmid/12823225&rfr_iscdi=true |