Loading…
Synchronous Deglacial Overturning and Water Mass Source Changes
Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to rec...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2010, Vol.327 (5961), p.75-78 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53 |
---|---|
cites | cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53 |
container_end_page | 78 |
container_issue | 5961 |
container_start_page | 75 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 327 |
creator | Roberts, Natalie L Piotrowski, Alexander M McManus, Jerry F Keigwin, Lloyd D |
description | Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events. |
doi_str_mv | 10.1126/science.1178068 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_734219174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40508295</jstor_id><sourcerecordid>40508295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmCroqJL4cwJiJBouYSOP2OfENoWilTUw1JxjGa9zjarrFPsBKn_nimbFolDOVnWPHkdvcPYSw4fOBfmJPs2RB_oUlkwdo_NODhdOgHyCZsBSFNaqPQBe5bzBoBmTj5lBwJAKV3JGfu4uI3-OvWxH3NxGtYd-ha74vJXSMOYYhvXBcZV8QOHkIpvmHOx6MfkQzG_xrgO-Tnbb7DL4cV0HrKrz2ff5-flxeWXr_NPFyUaLoZy6bXjlQ-Vd6ExShmtQrUEBa6hU3JtOVhUPsilWzmvLHkEgY0w3upGy0N2vMu9Sf3PMeSh3rbZh67DGOjX60oqwekJRfLoUSmNksI4_V8ouLBOSk7w_aOQGyUIOyOIvv2HbqiuSM1QnDSgOEhCJzvkU59zCk19k9otptuaQ3231npaaz2tlb54PcWOy21YPfj7PRJ4NwHMHrsmYfRt_uuEoBx3V86rndvkoU8PcwUarPjTyZvdvMG-xnWijKuFAC6BVwI09fEbQx679Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213604103</pqid></control><display><type>article</type><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</creator><creatorcontrib>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</creatorcontrib><description>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1178068</identifier><identifier>PMID: 20044573</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Climate ; Climate change ; Coatings ; Deep water ; Deglaciation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Glaciers ; Heinrich events ; Isotopes ; Marine and continental quaternary ; Neodymium isotopes ; Ocean bottom ; Ocean circulation ; Oceans ; Oxide coatings ; Oxides ; Paleoclimatology ; Sea water ; Sediments ; Surface water ; Surficial geology ; Synchronous</subject><ispartof>Science (American Association for the Advancement of Science), 2010, Vol.327 (5961), p.75-78</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</citedby><cites>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40508295$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40508295$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,2871,2872,4010,27900,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22280694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20044573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roberts, Natalie L</creatorcontrib><creatorcontrib>Piotrowski, Alexander M</creatorcontrib><creatorcontrib>McManus, Jerry F</creatorcontrib><creatorcontrib>Keigwin, Lloyd D</creatorcontrib><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</description><subject>Climate</subject><subject>Climate change</subject><subject>Coatings</subject><subject>Deep water</subject><subject>Deglaciation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Glaciers</subject><subject>Heinrich events</subject><subject>Isotopes</subject><subject>Marine and continental quaternary</subject><subject>Neodymium isotopes</subject><subject>Ocean bottom</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Oxide coatings</subject><subject>Oxides</subject><subject>Paleoclimatology</subject><subject>Sea water</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Surficial geology</subject><subject>Synchronous</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmCroqJL4cwJiJBouYSOP2OfENoWilTUw1JxjGa9zjarrFPsBKn_nimbFolDOVnWPHkdvcPYSw4fOBfmJPs2RB_oUlkwdo_NODhdOgHyCZsBSFNaqPQBe5bzBoBmTj5lBwJAKV3JGfu4uI3-OvWxH3NxGtYd-ha74vJXSMOYYhvXBcZV8QOHkIpvmHOx6MfkQzG_xrgO-Tnbb7DL4cV0HrKrz2ff5-flxeWXr_NPFyUaLoZy6bXjlQ-Vd6ExShmtQrUEBa6hU3JtOVhUPsilWzmvLHkEgY0w3upGy0N2vMu9Sf3PMeSh3rbZh67DGOjX60oqwekJRfLoUSmNksI4_V8ouLBOSk7w_aOQGyUIOyOIvv2HbqiuSM1QnDSgOEhCJzvkU59zCk19k9otptuaQ3231npaaz2tlb54PcWOy21YPfj7PRJ4NwHMHrsmYfRt_uuEoBx3V86rndvkoU8PcwUarPjTyZvdvMG-xnWijKuFAC6BVwI09fEbQx679Q</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Roberts, Natalie L</creator><creator>Piotrowski, Alexander M</creator><creator>McManus, Jerry F</creator><creator>Keigwin, Lloyd D</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><author>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Coatings</topic><topic>Deep water</topic><topic>Deglaciation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Glaciers</topic><topic>Heinrich events</topic><topic>Isotopes</topic><topic>Marine and continental quaternary</topic><topic>Neodymium isotopes</topic><topic>Ocean bottom</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Oxide coatings</topic><topic>Oxides</topic><topic>Paleoclimatology</topic><topic>Sea water</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Surficial geology</topic><topic>Synchronous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Natalie L</creatorcontrib><creatorcontrib>Piotrowski, Alexander M</creatorcontrib><creatorcontrib>McManus, Jerry F</creatorcontrib><creatorcontrib>Keigwin, Lloyd D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Natalie L</au><au>Piotrowski, Alexander M</au><au>McManus, Jerry F</au><au>Keigwin, Lloyd D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous Deglacial Overturning and Water Mass Source Changes</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010</date><risdate>2010</risdate><volume>327</volume><issue>5961</issue><spage>75</spage><epage>78</epage><pages>75-78</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20044573</pmid><doi>10.1126/science.1178068</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010, Vol.327 (5961), p.75-78 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_734219174 |
source | American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection |
subjects | Climate Climate change Coatings Deep water Deglaciation Earth sciences Earth, ocean, space Exact sciences and technology Glaciers Heinrich events Isotopes Marine and continental quaternary Neodymium isotopes Ocean bottom Ocean circulation Oceans Oxide coatings Oxides Paleoclimatology Sea water Sediments Surface water Surficial geology Synchronous |
title | Synchronous Deglacial Overturning and Water Mass Source Changes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20Deglacial%20Overturning%20and%20Water%20Mass%20Source%20Changes&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Roberts,%20Natalie%20L&rft.date=2010&rft.volume=327&rft.issue=5961&rft.spage=75&rft.epage=78&rft.pages=75-78&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1178068&rft_dat=%3Cjstor_proqu%3E40508295%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213604103&rft_id=info:pmid/20044573&rft_jstor_id=40508295&rfr_iscdi=true |