Loading…

Synchronous Deglacial Overturning and Water Mass Source Changes

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to rec...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2010, Vol.327 (5961), p.75-78
Main Authors: Roberts, Natalie L, Piotrowski, Alexander M, McManus, Jerry F, Keigwin, Lloyd D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53
cites cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53
container_end_page 78
container_issue 5961
container_start_page 75
container_title Science (American Association for the Advancement of Science)
container_volume 327
creator Roberts, Natalie L
Piotrowski, Alexander M
McManus, Jerry F
Keigwin, Lloyd D
description Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.
doi_str_mv 10.1126/science.1178068
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_734219174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40508295</jstor_id><sourcerecordid>40508295</sourcerecordid><originalsourceid>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBmCroqJL4cwJiJBouYSOP2OfENoWilTUw1JxjGa9zjarrFPsBKn_nimbFolDOVnWPHkdvcPYSw4fOBfmJPs2RB_oUlkwdo_NODhdOgHyCZsBSFNaqPQBe5bzBoBmTj5lBwJAKV3JGfu4uI3-OvWxH3NxGtYd-ha74vJXSMOYYhvXBcZV8QOHkIpvmHOx6MfkQzG_xrgO-Tnbb7DL4cV0HrKrz2ff5-flxeWXr_NPFyUaLoZy6bXjlQ-Vd6ExShmtQrUEBa6hU3JtOVhUPsilWzmvLHkEgY0w3upGy0N2vMu9Sf3PMeSh3rbZh67DGOjX60oqwekJRfLoUSmNksI4_V8ouLBOSk7w_aOQGyUIOyOIvv2HbqiuSM1QnDSgOEhCJzvkU59zCk19k9otptuaQ3231npaaz2tlb54PcWOy21YPfj7PRJ4NwHMHrsmYfRt_uuEoBx3V86rndvkoU8PcwUarPjTyZvdvMG-xnWijKuFAC6BVwI09fEbQx679Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213604103</pqid></control><display><type>article</type><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</creator><creatorcontrib>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</creatorcontrib><description>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1178068</identifier><identifier>PMID: 20044573</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Climate ; Climate change ; Coatings ; Deep water ; Deglaciation ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Glaciers ; Heinrich events ; Isotopes ; Marine and continental quaternary ; Neodymium isotopes ; Ocean bottom ; Ocean circulation ; Oceans ; Oxide coatings ; Oxides ; Paleoclimatology ; Sea water ; Sediments ; Surface water ; Surficial geology ; Synchronous</subject><ispartof>Science (American Association for the Advancement of Science), 2010, Vol.327 (5961), p.75-78</ispartof><rights>Copyright 2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</citedby><cites>FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40508295$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40508295$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,2871,2872,4010,27900,27901,27902,58213,58446</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22280694$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20044573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Roberts, Natalie L</creatorcontrib><creatorcontrib>Piotrowski, Alexander M</creatorcontrib><creatorcontrib>McManus, Jerry F</creatorcontrib><creatorcontrib>Keigwin, Lloyd D</creatorcontrib><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</description><subject>Climate</subject><subject>Climate change</subject><subject>Coatings</subject><subject>Deep water</subject><subject>Deglaciation</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Glaciers</subject><subject>Heinrich events</subject><subject>Isotopes</subject><subject>Marine and continental quaternary</subject><subject>Neodymium isotopes</subject><subject>Ocean bottom</subject><subject>Ocean circulation</subject><subject>Oceans</subject><subject>Oxide coatings</subject><subject>Oxides</subject><subject>Paleoclimatology</subject><subject>Sea water</subject><subject>Sediments</subject><subject>Surface water</subject><subject>Surficial geology</subject><subject>Synchronous</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqF0U1v1DAQBmCroqJL4cwJiJBouYSOP2OfENoWilTUw1JxjGa9zjarrFPsBKn_nimbFolDOVnWPHkdvcPYSw4fOBfmJPs2RB_oUlkwdo_NODhdOgHyCZsBSFNaqPQBe5bzBoBmTj5lBwJAKV3JGfu4uI3-OvWxH3NxGtYd-ha74vJXSMOYYhvXBcZV8QOHkIpvmHOx6MfkQzG_xrgO-Tnbb7DL4cV0HrKrz2ff5-flxeWXr_NPFyUaLoZy6bXjlQ-Vd6ExShmtQrUEBa6hU3JtOVhUPsilWzmvLHkEgY0w3upGy0N2vMu9Sf3PMeSh3rbZh67DGOjX60oqwekJRfLoUSmNksI4_V8ouLBOSk7w_aOQGyUIOyOIvv2HbqiuSM1QnDSgOEhCJzvkU59zCk19k9otptuaQ3231npaaz2tlb54PcWOy21YPfj7PRJ4NwHMHrsmYfRt_uuEoBx3V86rndvkoU8PcwUarPjTyZvdvMG-xnWijKuFAC6BVwI09fEbQx679Q</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Roberts, Natalie L</creator><creator>Piotrowski, Alexander M</creator><creator>McManus, Jerry F</creator><creator>Keigwin, Lloyd D</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7X8</scope></search><sort><creationdate>2010</creationdate><title>Synchronous Deglacial Overturning and Water Mass Source Changes</title><author>Roberts, Natalie L ; Piotrowski, Alexander M ; McManus, Jerry F ; Keigwin, Lloyd D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climate</topic><topic>Climate change</topic><topic>Coatings</topic><topic>Deep water</topic><topic>Deglaciation</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Glaciers</topic><topic>Heinrich events</topic><topic>Isotopes</topic><topic>Marine and continental quaternary</topic><topic>Neodymium isotopes</topic><topic>Ocean bottom</topic><topic>Ocean circulation</topic><topic>Oceans</topic><topic>Oxide coatings</topic><topic>Oxides</topic><topic>Paleoclimatology</topic><topic>Sea water</topic><topic>Sediments</topic><topic>Surface water</topic><topic>Surficial geology</topic><topic>Synchronous</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Natalie L</creatorcontrib><creatorcontrib>Piotrowski, Alexander M</creatorcontrib><creatorcontrib>McManus, Jerry F</creatorcontrib><creatorcontrib>Keigwin, Lloyd D</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roberts, Natalie L</au><au>Piotrowski, Alexander M</au><au>McManus, Jerry F</au><au>Keigwin, Lloyd D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronous Deglacial Overturning and Water Mass Source Changes</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010</date><risdate>2010</risdate><volume>327</volume><issue>5961</issue><spage>75</spage><epage>78</epage><pages>75-78</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20044573</pmid><doi>10.1126/science.1178068</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010, Vol.327 (5961), p.75-78
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_734219174
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Climate
Climate change
Coatings
Deep water
Deglaciation
Earth sciences
Earth, ocean, space
Exact sciences and technology
Glaciers
Heinrich events
Isotopes
Marine and continental quaternary
Neodymium isotopes
Ocean bottom
Ocean circulation
Oceans
Oxide coatings
Oxides
Paleoclimatology
Sea water
Sediments
Surface water
Surficial geology
Synchronous
title Synchronous Deglacial Overturning and Water Mass Source Changes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A11%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronous%20Deglacial%20Overturning%20and%20Water%20Mass%20Source%20Changes&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Roberts,%20Natalie%20L&rft.date=2010&rft.volume=327&rft.issue=5961&rft.spage=75&rft.epage=78&rft.pages=75-78&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1178068&rft_dat=%3Cjstor_proqu%3E40508295%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a612t-bc5917ce7c9ef644654e7b0409fe7b3158108a4ce3b9d9c48c59a02af26c85f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=213604103&rft_id=info:pmid/20044573&rft_jstor_id=40508295&rfr_iscdi=true