Loading…
PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis
The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by beta-adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone-sensitive li...
Saved in:
Published in: | The EMBO journal 2010-01, Vol.29 (2), p.469-481 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mobilization of metabolic energy from adipocytes depends on a tightly regulated balance between hydrolysis and resynthesis of triacylglycerides (TAGs). Hydrolysis is stimulated by beta-adrenergic signalling to PKA that mediates phosphorylation of lipolytic enzymes, including hormone-sensitive lipase (HSL). TAG resynthesis is associated with high-energy consumption, which when inordinate, leads to increased AMPK activity that acts to restrain hydrolysis of TAGs by inhibiting PKA-mediated activation of HSL. Here, we report that in primary mouse adipocytes, PKA associates with and phosphorylates AMPKalpha1 at Ser-173 to impede threonine (Thr-172) phosphorylation and thus activation of AMPKalpha1 by LKB1 in response to lipolytic signals. Activation of AMPKalpha1 by LKB1 is also blocked by PKA-mediated phosphorylation of AMPKalpha1 in vitro. Functional analysis of an AMPKalpha1 species carrying a non-phosphorylatable mutation at Ser-173 revealed a critical function of this phosphorylation for efficient release of free fatty acids and glycerol in response to PKA-activating signals. These results suggest a new mechanism of negative regulation of AMPK activity by PKA that is important for converting a lipolytic signal into an effective lipolytic response. |
---|---|
ISSN: | 1460-2075 |
DOI: | 10.1038/emboj.2009.339 |