Loading…

Theoretical proof of edge search strategy applied to power plant start-up scheduling

Power plant start-up scheduling is aimed at minimizing the start-up time while limiting maximum turbine rotor stresses. This scheduling problem is highly nonlinear and has a number of local optima. In our previous research, we proposed an efficient search model: genetic algorithms (GAs) with enforce...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2002-06, Vol.32 (3), p.316-331
Main Authors: Kamiya, A., Kawai, K., Ono, I., Kobayashi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3
cites cdi_FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3
container_end_page 331
container_issue 3
container_start_page 316
container_title IEEE transactions on cybernetics
container_volume 32
creator Kamiya, A.
Kawai, K.
Ono, I.
Kobayashi, S.
description Power plant start-up scheduling is aimed at minimizing the start-up time while limiting maximum turbine rotor stresses. This scheduling problem is highly nonlinear and has a number of local optima. In our previous research, we proposed an efficient search model: genetic algorithms (GAs) with enforcement operation to focus the search along the edge of the feasible space where the optimal schedule is supposed to stay. Based on a nonlinear dynamic simulation and a linear inverse calculation with the iteration method, the enforcement operation is applied to move schedules generated by GA toward the edge. We prove that the optimal schedule lies on the edge, ensuring that searching along the edge instead of the entire space can improve the search efficiency significantly without missing the optimum. Furthermore, we provide a theoretical setting equation for the inverse enforcement gains of the linear inverse calculation, intended to move schedules closer to the edge at each iteration of the enforcement operation. The theoretical setting equation is verified and discussed with the test results. We propose the theoretical setting equation with the test results as a guideline for the use of our proposed search model: GA with enforcement operation.
doi_str_mv 10.1109/TSMCB.2002.999808
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734249204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>999808</ieee_id><sourcerecordid>27785329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3</originalsourceid><addsrcrecordid>eNqFkk1r3DAQhkVpyGd_QHsooof05M3oy9Yc0yVtAgk5dHsWsj3edfCuXcmm5N9H211S6CELAgnmeV_NDC9jHwXMhAC8Wvx8mH-bSQA5Q0QL9h07FahFBhrl-_QGqzKtBZ6wsxifAAABi2N2IqxUVig4ZYvFivpAY1v5jg-h7xueDtVL4pF8qFY8jsGPtHzmfhi6lmo-9nzo_1DgQ-c3Y6r7MGbTwGO1onrq2s3ygh01vov0YX-fs1_fbxbz2-z-8cfd_Po-q3SOY0alFFA2XgF6XaYxilIZW-RNjmiM1ChqQt9Yq62VApWm0uSmFJU0knJbq3P2deebGv89URzduo0Vdakv6qfoEArMQaI-SBZKp_8kbMnLN0mZTMEAHAZtjtao_DBYFImTmMAv_4FP_RQ2aYMu7UCnUUyRILGDqtDHGKhxQ2jXPjw7AW6bCvc3FW6bCrdLRdJ83htP5Zrqf4p9DBLwaQe0RPRa3qtfABGFuPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884496057</pqid></control><display><type>article</type><title>Theoretical proof of edge search strategy applied to power plant start-up scheduling</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kamiya, A. ; Kawai, K. ; Ono, I. ; Kobayashi, S.</creator><creatorcontrib>Kamiya, A. ; Kawai, K. ; Ono, I. ; Kobayashi, S.</creatorcontrib><description>Power plant start-up scheduling is aimed at minimizing the start-up time while limiting maximum turbine rotor stresses. This scheduling problem is highly nonlinear and has a number of local optima. In our previous research, we proposed an efficient search model: genetic algorithms (GAs) with enforcement operation to focus the search along the edge of the feasible space where the optimal schedule is supposed to stay. Based on a nonlinear dynamic simulation and a linear inverse calculation with the iteration method, the enforcement operation is applied to move schedules generated by GA toward the edge. We prove that the optimal schedule lies on the edge, ensuring that searching along the edge instead of the entire space can improve the search efficiency significantly without missing the optimum. Furthermore, we provide a theoretical setting equation for the inverse enforcement gains of the linear inverse calculation, intended to move schedules closer to the edge at each iteration of the enforcement operation. The theoretical setting equation is verified and discussed with the test results. We propose the theoretical setting equation with the test results as a guideline for the use of our proposed search model: GA with enforcement operation.</description><identifier>ISSN: 1083-4419</identifier><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 1941-0492</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TSMCB.2002.999808</identifier><identifier>PMID: 18238130</identifier><identifier>CODEN: ITSCFI</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Dynamic scheduling ; Enforcement ; Equations ; Gain ; Genetic algorithms ; Guidelines ; Inverse ; Mathematical analysis ; Mathematical models ; Optimal scheduling ; Optimization ; Power generation ; Schedules ; Scheduling ; Searching ; Stress ; Studies ; Testing ; Turbines</subject><ispartof>IEEE transactions on cybernetics, 2002-06, Vol.32 (3), p.316-331</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3</citedby><cites>FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/999808$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18238130$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kamiya, A.</creatorcontrib><creatorcontrib>Kawai, K.</creatorcontrib><creatorcontrib>Ono, I.</creatorcontrib><creatorcontrib>Kobayashi, S.</creatorcontrib><title>Theoretical proof of edge search strategy applied to power plant start-up scheduling</title><title>IEEE transactions on cybernetics</title><addtitle>TSMCB</addtitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><description>Power plant start-up scheduling is aimed at minimizing the start-up time while limiting maximum turbine rotor stresses. This scheduling problem is highly nonlinear and has a number of local optima. In our previous research, we proposed an efficient search model: genetic algorithms (GAs) with enforcement operation to focus the search along the edge of the feasible space where the optimal schedule is supposed to stay. Based on a nonlinear dynamic simulation and a linear inverse calculation with the iteration method, the enforcement operation is applied to move schedules generated by GA toward the edge. We prove that the optimal schedule lies on the edge, ensuring that searching along the edge instead of the entire space can improve the search efficiency significantly without missing the optimum. Furthermore, we provide a theoretical setting equation for the inverse enforcement gains of the linear inverse calculation, intended to move schedules closer to the edge at each iteration of the enforcement operation. The theoretical setting equation is verified and discussed with the test results. We propose the theoretical setting equation with the test results as a guideline for the use of our proposed search model: GA with enforcement operation.</description><subject>Dynamic scheduling</subject><subject>Enforcement</subject><subject>Equations</subject><subject>Gain</subject><subject>Genetic algorithms</subject><subject>Guidelines</subject><subject>Inverse</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Optimal scheduling</subject><subject>Optimization</subject><subject>Power generation</subject><subject>Schedules</subject><subject>Scheduling</subject><subject>Searching</subject><subject>Stress</subject><subject>Studies</subject><subject>Testing</subject><subject>Turbines</subject><issn>1083-4419</issn><issn>2168-2267</issn><issn>1941-0492</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkk1r3DAQhkVpyGd_QHsooof05M3oy9Yc0yVtAgk5dHsWsj3edfCuXcmm5N9H211S6CELAgnmeV_NDC9jHwXMhAC8Wvx8mH-bSQA5Q0QL9h07FahFBhrl-_QGqzKtBZ6wsxifAAABi2N2IqxUVig4ZYvFivpAY1v5jg-h7xueDtVL4pF8qFY8jsGPtHzmfhi6lmo-9nzo_1DgQ-c3Y6r7MGbTwGO1onrq2s3ygh01vov0YX-fs1_fbxbz2-z-8cfd_Po-q3SOY0alFFA2XgF6XaYxilIZW-RNjmiM1ChqQt9Yq62VApWm0uSmFJU0knJbq3P2deebGv89URzduo0Vdakv6qfoEArMQaI-SBZKp_8kbMnLN0mZTMEAHAZtjtao_DBYFImTmMAv_4FP_RQ2aYMu7UCnUUyRILGDqtDHGKhxQ2jXPjw7AW6bCvc3FW6bCrdLRdJ83htP5Zrqf4p9DBLwaQe0RPRa3qtfABGFuPg</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Kamiya, A.</creator><creator>Kawai, K.</creator><creator>Ono, I.</creator><creator>Kobayashi, S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20020601</creationdate><title>Theoretical proof of edge search strategy applied to power plant start-up scheduling</title><author>Kamiya, A. ; Kawai, K. ; Ono, I. ; Kobayashi, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Dynamic scheduling</topic><topic>Enforcement</topic><topic>Equations</topic><topic>Gain</topic><topic>Genetic algorithms</topic><topic>Guidelines</topic><topic>Inverse</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Optimal scheduling</topic><topic>Optimization</topic><topic>Power generation</topic><topic>Schedules</topic><topic>Scheduling</topic><topic>Searching</topic><topic>Stress</topic><topic>Studies</topic><topic>Testing</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamiya, A.</creatorcontrib><creatorcontrib>Kawai, K.</creatorcontrib><creatorcontrib>Ono, I.</creatorcontrib><creatorcontrib>Kobayashi, S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamiya, A.</au><au>Kawai, K.</au><au>Ono, I.</au><au>Kobayashi, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical proof of edge search strategy applied to power plant start-up scheduling</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TSMCB</stitle><addtitle>IEEE Trans Syst Man Cybern B Cybern</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>32</volume><issue>3</issue><spage>316</spage><epage>331</epage><pages>316-331</pages><issn>1083-4419</issn><issn>2168-2267</issn><eissn>1941-0492</eissn><eissn>2168-2275</eissn><coden>ITSCFI</coden><abstract>Power plant start-up scheduling is aimed at minimizing the start-up time while limiting maximum turbine rotor stresses. This scheduling problem is highly nonlinear and has a number of local optima. In our previous research, we proposed an efficient search model: genetic algorithms (GAs) with enforcement operation to focus the search along the edge of the feasible space where the optimal schedule is supposed to stay. Based on a nonlinear dynamic simulation and a linear inverse calculation with the iteration method, the enforcement operation is applied to move schedules generated by GA toward the edge. We prove that the optimal schedule lies on the edge, ensuring that searching along the edge instead of the entire space can improve the search efficiency significantly without missing the optimum. Furthermore, we provide a theoretical setting equation for the inverse enforcement gains of the linear inverse calculation, intended to move schedules closer to the edge at each iteration of the enforcement operation. The theoretical setting equation is verified and discussed with the test results. We propose the theoretical setting equation with the test results as a guideline for the use of our proposed search model: GA with enforcement operation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>18238130</pmid><doi>10.1109/TSMCB.2002.999808</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1083-4419
ispartof IEEE transactions on cybernetics, 2002-06, Vol.32 (3), p.316-331
issn 1083-4419
2168-2267
1941-0492
2168-2275
language eng
recordid cdi_proquest_miscellaneous_734249204
source IEEE Electronic Library (IEL) Journals
subjects Dynamic scheduling
Enforcement
Equations
Gain
Genetic algorithms
Guidelines
Inverse
Mathematical analysis
Mathematical models
Optimal scheduling
Optimization
Power generation
Schedules
Scheduling
Searching
Stress
Studies
Testing
Turbines
title Theoretical proof of edge search strategy applied to power plant start-up scheduling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20proof%20of%20edge%20search%20strategy%20applied%20to%20power%20plant%20start-up%20scheduling&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Kamiya,%20A.&rft.date=2002-06-01&rft.volume=32&rft.issue=3&rft.spage=316&rft.epage=331&rft.pages=316-331&rft.issn=1083-4419&rft.eissn=1941-0492&rft.coden=ITSCFI&rft_id=info:doi/10.1109/TSMCB.2002.999808&rft_dat=%3Cproquest_cross%3E27785329%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-eb210bfa309a4b2007b35876f699552491de9af8848821934eb565b1c252e68d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884496057&rft_id=info:pmid/18238130&rft_ieee_id=999808&rfr_iscdi=true