Loading…
A theoretical framework for performance characterization of elastography: the strain filter
This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elast...
Saved in:
Published in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893 |
---|---|
cites | cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893 |
container_end_page | 172 |
container_issue | 1 |
container_start_page | 164 |
container_title | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
container_volume | 44 |
creator | Varghese, T. Ophir, J. |
description | This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter. |
doi_str_mv | 10.1109/58.585212 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734250137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>585212</ieee_id><sourcerecordid>734250137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALgcglUNBSIBcoiGKDx_asbboo4iNSJBqoKFY-35gz7Mdh7ylKfn0c3Sp0RBppinn0TvEy9grEGYBwH9CeoUUJ8glbAUpsrEN8ylbCWmyUAHHEjkv5LQRo7eRzdgRWag2gV-znOZ-3NGWaU_A9j9kPdD3lPzxOme8o1zX4MRAPW599mCmnWz-naeRT5NT7Mk-_st9tbz7e5_AyZ59GHlNf5Qv2LPq-0Mtln7Afnz99v_jaXH37cnlxftUEVDA3GmEtrHFmHTRFQNKxdVpCG4R0G6IQpGuVC0bbTdz4iF5EHdroBVjTWqdO2LtD7i5Pf_dU5m5IJVDf-5GmfemM0hIFKFPl6X-ltC20BuFxaJQzWqlHIaDTqk6F7w8w5KmUTLHb5TT4fNOB6O5b7NB2hxarfbOE7tcDbf7JpbYK3i7Al1pbbW0MqTw4icYoi5W9PrBERA_X5ckdI46sBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15943943</pqid></control><display><type>article</type><title>A theoretical framework for performance characterization of elastography: the strain filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Varghese, T. ; Ophir, J.</creator><creatorcontrib>Varghese, T. ; Ophir, J.</creatorcontrib><description>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.585212</identifier><identifier>PMID: 18244114</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Biological and medical sciences ; Capacitive sensors ; Decorrelation ; Dynamic range ; Exact sciences and technology ; Filtering ; Filters ; Fundamental areas of phenomenology (including applications) ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Physics ; Quantization ; Signal sampling ; Signal to noise ratio ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Upper bound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</citedby><cites>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/585212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2577385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varghese, T.</creatorcontrib><creatorcontrib>Ophir, J.</creatorcontrib><title>A theoretical framework for performance characterization of elastography: the strain filter</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Biological and medical sciences</subject><subject>Capacitive sensors</subject><subject>Decorrelation</subject><subject>Dynamic range</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filters</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Physics</subject><subject>Quantization</subject><subject>Signal sampling</subject><subject>Signal to noise ratio</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Upper bound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0T1vFDEQBmALgcglUNBSIBcoiGKDx_asbboo4iNSJBqoKFY-35gz7Mdh7ylKfn0c3Sp0RBppinn0TvEy9grEGYBwH9CeoUUJ8glbAUpsrEN8ylbCWmyUAHHEjkv5LQRo7eRzdgRWag2gV-znOZ-3NGWaU_A9j9kPdD3lPzxOme8o1zX4MRAPW599mCmnWz-naeRT5NT7Mk-_st9tbz7e5_AyZ59GHlNf5Qv2LPq-0Mtln7Afnz99v_jaXH37cnlxftUEVDA3GmEtrHFmHTRFQNKxdVpCG4R0G6IQpGuVC0bbTdz4iF5EHdroBVjTWqdO2LtD7i5Pf_dU5m5IJVDf-5GmfemM0hIFKFPl6X-ltC20BuFxaJQzWqlHIaDTqk6F7w8w5KmUTLHb5TT4fNOB6O5b7NB2hxarfbOE7tcDbf7JpbYK3i7Al1pbbW0MqTw4icYoi5W9PrBERA_X5ckdI46sBg</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Varghese, T.</creator><creator>Ophir, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7SP</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>A theoretical framework for performance characterization of elastography: the strain filter</title><author>Varghese, T. ; Ophir, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Biological and medical sciences</topic><topic>Capacitive sensors</topic><topic>Decorrelation</topic><topic>Dynamic range</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filters</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Physics</topic><topic>Quantization</topic><topic>Signal sampling</topic><topic>Signal to noise ratio</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varghese, T.</creatorcontrib><creatorcontrib>Ophir, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics & Communications Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varghese, T.</au><au>Ophir, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical framework for performance characterization of elastography: the strain filter</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>1997-01</date><risdate>1997</risdate><volume>44</volume><issue>1</issue><spage>164</spage><epage>172</epage><pages>164-172</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244114</pmid><doi>10.1109/58.585212</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3010 |
ispartof | IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172 |
issn | 0885-3010 1525-8955 |
language | eng |
recordid | cdi_proquest_miscellaneous_734250137 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Acoustical measurements and instrumentation Acoustics Biological and medical sciences Capacitive sensors Decorrelation Dynamic range Exact sciences and technology Filtering Filters Fundamental areas of phenomenology (including applications) Investigative techniques, diagnostic techniques (general aspects) Medical sciences Miscellaneous. Technology Physics Quantization Signal sampling Signal to noise ratio Ultrasonic imaging Ultrasonic investigative techniques Upper bound |
title | A theoretical framework for performance characterization of elastography: the strain filter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20framework%20for%20performance%20characterization%20of%20elastography:%20the%20strain%20filter&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Varghese,%20T.&rft.date=1997-01&rft.volume=44&rft.issue=1&rft.spage=164&rft.epage=172&rft.pages=164-172&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.585212&rft_dat=%3Cproquest_cross%3E734250137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15943943&rft_id=info:pmid/18244114&rft_ieee_id=585212&rfr_iscdi=true |