Loading…

A theoretical framework for performance characterization of elastography: the strain filter

This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elast...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172
Main Authors: Varghese, T., Ophir, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893
cites cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893
container_end_page 172
container_issue 1
container_start_page 164
container_title IEEE transactions on ultrasonics, ferroelectrics, and frequency control
container_volume 44
creator Varghese, T.
Ophir, J.
description This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.
doi_str_mv 10.1109/58.585212
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_734250137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>585212</ieee_id><sourcerecordid>734250137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</originalsourceid><addsrcrecordid>eNqF0T1vFDEQBmALgcglUNBSIBcoiGKDx_asbboo4iNSJBqoKFY-35gz7Mdh7ylKfn0c3Sp0RBppinn0TvEy9grEGYBwH9CeoUUJ8glbAUpsrEN8ylbCWmyUAHHEjkv5LQRo7eRzdgRWag2gV-znOZ-3NGWaU_A9j9kPdD3lPzxOme8o1zX4MRAPW599mCmnWz-naeRT5NT7Mk-_st9tbz7e5_AyZ59GHlNf5Qv2LPq-0Mtln7Afnz99v_jaXH37cnlxftUEVDA3GmEtrHFmHTRFQNKxdVpCG4R0G6IQpGuVC0bbTdz4iF5EHdroBVjTWqdO2LtD7i5Pf_dU5m5IJVDf-5GmfemM0hIFKFPl6X-ltC20BuFxaJQzWqlHIaDTqk6F7w8w5KmUTLHb5TT4fNOB6O5b7NB2hxarfbOE7tcDbf7JpbYK3i7Al1pbbW0MqTw4icYoi5W9PrBERA_X5ckdI46sBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15943943</pqid></control><display><type>article</type><title>A theoretical framework for performance characterization of elastography: the strain filter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Varghese, T. ; Ophir, J.</creator><creatorcontrib>Varghese, T. ; Ophir, J.</creatorcontrib><description>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</description><identifier>ISSN: 0885-3010</identifier><identifier>EISSN: 1525-8955</identifier><identifier>DOI: 10.1109/58.585212</identifier><identifier>PMID: 18244114</identifier><identifier>CODEN: ITUCER</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Acoustical measurements and instrumentation ; Acoustics ; Biological and medical sciences ; Capacitive sensors ; Decorrelation ; Dynamic range ; Exact sciences and technology ; Filtering ; Filters ; Fundamental areas of phenomenology (including applications) ; Investigative techniques, diagnostic techniques (general aspects) ; Medical sciences ; Miscellaneous. Technology ; Physics ; Quantization ; Signal sampling ; Signal to noise ratio ; Ultrasonic imaging ; Ultrasonic investigative techniques ; Upper bound</subject><ispartof>IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</citedby><cites>FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/585212$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2577385$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18244114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varghese, T.</creatorcontrib><creatorcontrib>Ophir, J.</creatorcontrib><title>A theoretical framework for performance characterization of elastography: the strain filter</title><title>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</title><addtitle>T-UFFC</addtitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><description>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</description><subject>Acoustical measurements and instrumentation</subject><subject>Acoustics</subject><subject>Biological and medical sciences</subject><subject>Capacitive sensors</subject><subject>Decorrelation</subject><subject>Dynamic range</subject><subject>Exact sciences and technology</subject><subject>Filtering</subject><subject>Filters</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Physics</subject><subject>Quantization</subject><subject>Signal sampling</subject><subject>Signal to noise ratio</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonic investigative techniques</subject><subject>Upper bound</subject><issn>0885-3010</issn><issn>1525-8955</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqF0T1vFDEQBmALgcglUNBSIBcoiGKDx_asbboo4iNSJBqoKFY-35gz7Mdh7ylKfn0c3Sp0RBppinn0TvEy9grEGYBwH9CeoUUJ8glbAUpsrEN8ylbCWmyUAHHEjkv5LQRo7eRzdgRWag2gV-znOZ-3NGWaU_A9j9kPdD3lPzxOme8o1zX4MRAPW599mCmnWz-naeRT5NT7Mk-_st9tbz7e5_AyZ59GHlNf5Qv2LPq-0Mtln7Afnz99v_jaXH37cnlxftUEVDA3GmEtrHFmHTRFQNKxdVpCG4R0G6IQpGuVC0bbTdz4iF5EHdroBVjTWqdO2LtD7i5Pf_dU5m5IJVDf-5GmfemM0hIFKFPl6X-ltC20BuFxaJQzWqlHIaDTqk6F7w8w5KmUTLHb5TT4fNOB6O5b7NB2hxarfbOE7tcDbf7JpbYK3i7Al1pbbW0MqTw4icYoi5W9PrBERA_X5ckdI46sBg</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Varghese, T.</creator><creator>Ophir, J.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7U5</scope><scope>L7M</scope><scope>7SP</scope><scope>7X8</scope></search><sort><creationdate>199701</creationdate><title>A theoretical framework for performance characterization of elastography: the strain filter</title><author>Varghese, T. ; Ophir, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Acoustical measurements and instrumentation</topic><topic>Acoustics</topic><topic>Biological and medical sciences</topic><topic>Capacitive sensors</topic><topic>Decorrelation</topic><topic>Dynamic range</topic><topic>Exact sciences and technology</topic><topic>Filtering</topic><topic>Filters</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Physics</topic><topic>Quantization</topic><topic>Signal sampling</topic><topic>Signal to noise ratio</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonic investigative techniques</topic><topic>Upper bound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varghese, T.</creatorcontrib><creatorcontrib>Ophir, J.</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varghese, T.</au><au>Ophir, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical framework for performance characterization of elastography: the strain filter</atitle><jtitle>IEEE transactions on ultrasonics, ferroelectrics, and frequency control</jtitle><stitle>T-UFFC</stitle><addtitle>IEEE Trans Ultrason Ferroelectr Freq Control</addtitle><date>1997-01</date><risdate>1997</risdate><volume>44</volume><issue>1</issue><spage>164</spage><epage>172</epage><pages>164-172</pages><issn>0885-3010</issn><eissn>1525-8955</eissn><coden>ITUCER</coden><abstract>This paper presents a theoretical framework for performance characterization in strain estimation, which includes the effect of signal decorrelation, quantization errors due to the finite temporal sampling rate, and electronic noise. An upper bound on the performance of the strain estimator in elastography is obtained from a strain filter constructed using these limits. The strain filter is a term used to describe the nonlinear filtering process in the strain domain (due to the ultrasound system and signal processing parameters) that allows the elastographic depiction of a limited range of strains from the compressed tissue. The strain filter predicts the elastogram quality by specifying the elastographic signal-to-noise ratio (SNR/sub e/), sensitivity, and the strain dynamic range at a given resolution. The dynamic range is limited by decorrelation errors for large tissue strain values, and electronic noise for low strain values. Tradeoffs between different techniques used to enhance elastogram image quality may also be analyzed using the strain filter.</abstract><cop>New York, NY</cop><pub>IEEE</pub><pmid>18244114</pmid><doi>10.1109/58.585212</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-3010
ispartof IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 1997-01, Vol.44 (1), p.164-172
issn 0885-3010
1525-8955
language eng
recordid cdi_proquest_miscellaneous_734250137
source IEEE Electronic Library (IEL) Journals
subjects Acoustical measurements and instrumentation
Acoustics
Biological and medical sciences
Capacitive sensors
Decorrelation
Dynamic range
Exact sciences and technology
Filtering
Filters
Fundamental areas of phenomenology (including applications)
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Miscellaneous. Technology
Physics
Quantization
Signal sampling
Signal to noise ratio
Ultrasonic imaging
Ultrasonic investigative techniques
Upper bound
title A theoretical framework for performance characterization of elastography: the strain filter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20framework%20for%20performance%20characterization%20of%20elastography:%20the%20strain%20filter&rft.jtitle=IEEE%20transactions%20on%20ultrasonics,%20ferroelectrics,%20and%20frequency%20control&rft.au=Varghese,%20T.&rft.date=1997-01&rft.volume=44&rft.issue=1&rft.spage=164&rft.epage=172&rft.pages=164-172&rft.issn=0885-3010&rft.eissn=1525-8955&rft.coden=ITUCER&rft_id=info:doi/10.1109/58.585212&rft_dat=%3Cproquest_cross%3E734250137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c531t-451b08797bc4ef15e4f694216c029deecc29639c748dfdaf5a0f4c6fa01876893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=15943943&rft_id=info:pmid/18244114&rft_ieee_id=585212&rfr_iscdi=true