Loading…
Terabit optical local area networks for multiprocessing systems
The design of a scalable optical local area network formultiprocessing systems is described. Each workstation has aparallel-fiber-ribbon optical link to a centralized complementarymetal-oxide silicon (CMOS) switch core, implemented on a singlecompact printed circuit board (PCB). When the Motorola Op...
Saved in:
Published in: | Applied optics (2004) 1998-01, Vol.37 (2), p.264-275 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The design of a scalable optical local area network formultiprocessing systems is described. Each workstation has aparallel-fiber-ribbon optical link to a centralized complementarymetal-oxide silicon (CMOS) switch core, implemented on a singlecompact printed circuit board (PCB). When the Motorola Optobusfiber technology is used, each workstation has a data bandwidth of 6.4Gbits/s to the core. A centralized switch core interconnecting 32workstations supports a 204-Gbit/s aggregate data bandwidth. Theswitch core is based on a conventional broadcast-and-selectarchitecture, implemented with parallel CMOS integrated circuits(IC's). The switch core scales well; by incorporation of theCMOS optoelectronic IC's with optical input-output, the electricalcore can be reduced to a single-chip optoelectronic IC with terabitcapacities. A prototype of an optoelectronic switch core has been fabricated and is described. The appeal of the architectureincludes its reliance on commercially available parallel-fibertechnology, its reliance on the well-developed markets of local areanetworks and networks of workstations, and its smooth scalability from the electrical to optical domains as technology matures. |
---|---|
ISSN: | 1559-128X |
DOI: | 10.1364/AO.37.000264 |