Loading…
Bridging the quasi-static and the physical optics approximations: an elliptic disk case
A reformulated integral equation is solved inside an elliptic disk particle for an electromagnetic field formulation bridging the quasi-static and the physical optics approximations. The scattering amplitude tensor elements associated with such a field formulation are derived and then used to formul...
Saved in:
Published in: | Applied optics (2004) 1998-03, Vol.37 (9), p.1666-1673 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A reformulated integral equation is solved inside an elliptic disk particle for an electromagnetic field formulation bridging the quasi-static and the physical optics approximations. The scattering amplitude tensor elements associated with such a field formulation are derived and then used to formulate the extinction cross sections. It is shown that the extinction cross sections have a frequency dependence and an incidence angle dependence similar to those associated with the physical optics approximation, and they have a particle shape dependence similar to that associated with the quasi-static approximation. Furthermore, at the high-frequency limits, it is shown that those cross sections could reach the value known in the literature by the extinction paradox, namely, twice the particle geometric shadow area. |
---|---|
ISSN: | 1559-128X |
DOI: | 10.1364/AO.37.001666 |