Loading…

Markov Chain Monte Carlo approaches to analysis of genetic and environmental components of human developmental change and G x E interaction

The linear structural model has provided the statistical backbone of the analysis of twin and family data for 25 years. A new generation of questions cannot easily be forced into the framework of current approaches to modeling and data analysis because they involve nonlinear processes. Maximizing th...

Full description

Saved in:
Bibliographic Details
Published in:Behavior genetics 2003-05, Vol.33 (3), p.279-300
Main Authors: Eaves, Lindon, Erkanli, Alaattin
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The linear structural model has provided the statistical backbone of the analysis of twin and family data for 25 years. A new generation of questions cannot easily be forced into the framework of current approaches to modeling and data analysis because they involve nonlinear processes. Maximizing the likelihood with respect to parameters of such nonlinear models is often cumbersome and does not yield easily to current numerical methods. The application of Markov Chain Monte Carlo (MCMC) methods to modeling the nonlinear effects of genes and environment in MZ and DZ twins is outlined. Nonlinear developmental change and genotype x environment interaction in the presence of genotype-environment correlation are explored in simulated twin data. The MCMC method recovers the simulated parameters and provides estimates of error and latent (missing) trait values. Possible limitations of MCMC methods are discussed. Further studies are necessary explore the value of an approach that could extend the horizons of research in developmental genetic epidemiology.
ISSN:0001-8244
DOI:10.1023/A:1023446524917