Loading…

A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis

Doppler spectrum analysis provides a non-invasive means to measure blood flow velocity and to diagnose arterial occlusive disease. The time-frequency representation of the Doppler blood flow signal is normally computed by using the short-time Fourier transform (STFT). This transform requires station...

Full description

Saved in:
Bibliographic Details
Published in:Medical engineering & physics 2003-09, Vol.25 (7), p.547-557
Main Authors: Zhang, Yufeng, Guo, Zhenyu, Wang, Weilian, He, Side, Lee, Ting, Loew, Murray
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Doppler spectrum analysis provides a non-invasive means to measure blood flow velocity and to diagnose arterial occlusive disease. The time-frequency representation of the Doppler blood flow signal is normally computed by using the short-time Fourier transform (STFT). This transform requires stationarity of the signal during a finite time interval, and thus imposes some constraints on the representation estimate. In addition, the STFT has a fixed time-frequency window, making it inaccurate to analyze signals having relatively wide bandwidths that change rapidly with time. In the present study, wavelet transform (WT), having a flexible time-frequency window, was used to investigate its advantages and limitations for the analysis of the Doppler blood flow signal. Representations computed using the WT with a modified Morlet wavelet were investigated and compared with the theoretical representation and those computed using the STFT with a Gaussian window. The time and frequency resolutions of these two approaches were compared. Three indices, the normalized root-mean-squared errors of the minimum, the maximum and the mean frequency waveforms, were used to evaluate the performance of the WT. Results showed that the WT can not only be used as an alternative signal processing tool to the STFT for Doppler blood flow signals, but can also generate a time-frequency representation with better resolution than the STFT. In addition, the WT method can provide both satisfactory mean frequencies and maximum frequencies. This technique is expected to be useful for the analysis of Doppler blood flow signals to quantify arterial stenoses.
ISSN:1350-4533
1873-4030
DOI:10.1016/S1350-4533(03)00052-3