Loading…
Na +-dependent fructose transport via rNaGLT1 in rat kidney
We found a system of Na +-dependent uptake of fructose by rat renal brush-border membrane vesicles. It consisted of two saturable components, and was thought to involve at least two transporters. rNaGLT1, a novel glucose transporter in rat kidney, showed fructose uptake as well as α-methyl- D-glucop...
Saved in:
Published in: | FEBS letters 2003-07, Vol.546 (2), p.276-280 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We found a system of Na
+-dependent uptake of fructose by rat renal brush-border membrane vesicles. It consisted of two saturable components, and was thought to involve at least two transporters. rNaGLT1, a novel glucose transporter in rat kidney, showed fructose uptake as well as α-methyl-
D-glucopyranoside uptake by transfected HEK293 cells. The features of the lower affinity type of fructose transporter in the brush-border membranes, such as affinity and substrate recognition, were very comparable with those of rNaGLT1-transfected HEK293 cells. These results indicated that rNaGLT1 is a primary fructose transporter in rat renal brush-border membranes. |
---|---|
ISSN: | 0014-5793 1873-3468 |
DOI: | 10.1016/S0014-5793(03)00600-8 |