Loading…

Differentiation of neurospheres from the enteric nervous system

The enteric nervous system (ENS) derives from neural crest cells, which migrate from the neural tube into the developing gut. The neuronal and glial precursor cells migrate mainly from the oral towards the anal end of the gastrointestinal tract. So far, knowledge about the multipotent influences upo...

Full description

Saved in:
Bibliographic Details
Published in:Pediatric surgery international 2003-07, Vol.19 (5), p.340-344
Main Authors: Schäfer, Karl-Herbert, Hagl, Cornelia Irene, Rauch, Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The enteric nervous system (ENS) derives from neural crest cells, which migrate from the neural tube into the developing gut. The neuronal and glial precursor cells migrate mainly from the oral towards the anal end of the gastrointestinal tract. So far, knowledge about the multipotent influences upon the ENS development, especially its neurotrophic support, derives mainly from knock-out models. The in vitro technique of isolating enteric neuronal precursor cells allows to study the effects of various factors upon their appropriate development in more detail. We therefore adapted the method of growing neurospheres, which are agglomerates of neuronal precursor cells and differentiated neurones and glial cells, from the central nervous system (CNS) for the ENS. The gut of NMRI mice at E12 were dissected, mildly dissociated and plated in 25-cm(2) culture flasks. The cultures were maintained in N1 supplemented DMEM/F12 medium with the appropriate neurotrophin cocktails (bFGF, GDNF, Neurturin, CNTF). After several days in culture most of the cells die, while the surviving cells form clusters from which domes, and later spheres arise. The spheres could be harvested and processed for further experiments. First investigations revealed, that the amount of precursor cells was much less in enteric neurospheres as seen in corresponding cultures from the CNS. We found about 43% HNK-1-NCAM+ in enteric and approximately 90% Nestin-+ cells in midbrain neurospheres. Differentiation studies of the enteric neurospheres showed that especially ciliary neurotrophic factor (CNTF) increased the number of enteric neurones (PGP positive), while the amount of HNK-1 precursor cells decreased under the influence of all tested neurotrophins but GDNF. The culture of the freshly dissociated enteric neurospheres in a three-dimensional matrix yielded a secondary network which allows to investigate the pattern formation of the ENS. The generation of enteric neurospheres and the following differentiation and 3D culture in vitro can increase our knowledge of the amount and time point of neurotrophic as well as the ECM-protein influence upon the appropriate development of the ENS.
ISSN:0179-0358
1437-9813
DOI:10.1007/s00383-003-1007-4