Loading…
RNA processing defects of the helicase gene RECQL4 in a compound heterozygous Rothmund-Thomson patient
Rothmund–Thomson syndrome (RTS) (OMIM 268400) is an autosomal recessive genodermatosis associated with genomic instability and increased risk of mesenchymal cancers. Mutations in the RECQL4 gene, encoding a protein of the family of Werner (WRN) and Bloom (BLM) helicases, have been identified in a su...
Saved in:
Published in: | American journal of medical genetics 2003-07, Vol.120A (3), p.395-399 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Rothmund–Thomson syndrome (RTS) (OMIM 268400) is an autosomal recessive genodermatosis associated with genomic instability and increased risk of mesenchymal cancers. Mutations in the RECQL4 gene, encoding a protein of the family of Werner (WRN) and Bloom (BLM) helicases, have been identified in a subset of RTS patients. Apart from congenital poikiloderma, the clinical presentation of RTS is widely variable, raising the question of the possible existence of a second locus. Results herein reported on a sporadic Caucasian patient emphasize the concept that mutation analyses at both DNA and RNA level complement the genetic defect suggested by clinical and cytogenetic signs. The patient presented with typical congenital poikiloderma and bone defects and exhibited significant genomic instability in the peripheral blood karyotype. By RECQL4 DNA mutation analysis, he was found to carry a 1473delT (mut 5) on one allele and an AG to AC change at the 3′‐splice site of exon 13 (a variant of mut 4) on the second allele. RT‐PCR analysis of RECQL4 cDNA encompassing the entire helicase domain showed diffuse splicing defects indicating that the loss of a single 3′‐splice signal motif disregulates the correct splice‐site selection and affects the overall RNA processing. The presence of an unstable minisatellite which ends at 3′‐splice site of IVS12 may enhance the mutation at this site. This genomic feature together with a number of short introns in the RECQL4 gene may account for the common missplicing of RECQL4 mRNA. While it is possible that defects of RECQL4 mRNA processing might account for part of the clinical variability observed for this syndrome, only a thorough analysis at both genomic and RNA level may allow a genotype–phenotype correlation in RTS patients, restricting the search of a second RTS locus to the specific patients. © 2003 Wiley‐Liss, Inc. |
---|---|
ISSN: | 1552-4825 0148-7299 1552-4833 1096-8628 |
DOI: | 10.1002/ajmg.a.20154 |