Loading…

The Ribosome through the Looking Glass

For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA–protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 diff...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2003-08, Vol.42 (30), p.3464-3486
Main Authors: Wilson, Daniel N., Nierhaus, Knud H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3
cites cdi_FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3
container_end_page 3486
container_issue 30
container_start_page 3464
container_title Angewandte Chemie International Edition
container_volume 42
creator Wilson, Daniel N.
Nierhaus, Knud H.
description For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA–protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 different proteins, and have a molecular mass totaling over 2.5 million Daltons. The past few years have seen the resolution of structures at the atomic level for both large and small subunits and of the complete 70S ribosome from Thermus thermophilus at a resolution of 5.5‐Å. Soaking of small ligands (such as antibiotics, substrate analogues, and small translational factors) into the crystals of the subunits has revolutionized our understanding of the central functions of the ribosome. Coupled with the power of cryo‐electron microscopic studies of translation complexes, a collection of snap‐shots is accumulating, which can be assembled to create a likely motion picture of the bacterial ribosome during translation. Recent analyses show yeast ribosomes have a remarkable structural similarity to bacterial ribosomes. This Review aims to follow the bacterial ribosome through each sequential “frame” of the translation cycle, emphasizing at each point the features that are found in all organisms. One for all: Ribosomes are the translation machines of the cell which convert genetic information into protein structure in the same manner in all animals. Recent crystallographic and cryo‐electron microscopic reconstructions of ribosomes have revolutionized our understanding of the translation process. The superposed illustration shows the impressive structural similarity of prokaryotic and eukaryotic ribosomes.
doi_str_mv 10.1002/anie.200200544
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73521450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20633648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3</originalsourceid><addsrcrecordid>eNqFkE1PwkAYhDdGI4hePZqeuBX3e7tHQhCIDSYG9bjZtluotCx2aZR_75IS9MZp5vDM5H0HgHsEBwhC_Kg3hRlg7yBklF6ALmIYhUQIcuk9JSQUEUMdcOPcp6eiCPJr0EFYQiiZ7IL-YmWC1yKxzlYm2K1q2yxXXk0QW7suNstgUmrnbsFVrktn7o7aA29P48VoGsYvk9loGIcpFZyGEU64kIzTiGGMcoaMyTTnMksSqTHhOUZRJKlAnKUZTKBOGc4Q1ijlaYaNJj3Qb3u3tf1qjNupqnCpKUu9MbZxShD_HmXwLIghJ8Tf4cFBC6a1da42udrWRaXrvUJQHSZUhwnVaUIfeDg2N0llsj_8uJkHZAt8F6XZn6lTw_ls_L88bLOF25mfU1bXa8UFEUx9zCcqHr0zMn2eq5j8Ajfbifo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20633648</pqid></control><display><type>article</type><title>The Ribosome through the Looking Glass</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wilson, Daniel N. ; Nierhaus, Knud H.</creator><creatorcontrib>Wilson, Daniel N. ; Nierhaus, Knud H.</creatorcontrib><description>For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA–protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 different proteins, and have a molecular mass totaling over 2.5 million Daltons. The past few years have seen the resolution of structures at the atomic level for both large and small subunits and of the complete 70S ribosome from Thermus thermophilus at a resolution of 5.5‐Å. Soaking of small ligands (such as antibiotics, substrate analogues, and small translational factors) into the crystals of the subunits has revolutionized our understanding of the central functions of the ribosome. Coupled with the power of cryo‐electron microscopic studies of translation complexes, a collection of snap‐shots is accumulating, which can be assembled to create a likely motion picture of the bacterial ribosome during translation. Recent analyses show yeast ribosomes have a remarkable structural similarity to bacterial ribosomes. This Review aims to follow the bacterial ribosome through each sequential “frame” of the translation cycle, emphasizing at each point the features that are found in all organisms. One for all: Ribosomes are the translation machines of the cell which convert genetic information into protein structure in the same manner in all animals. Recent crystallographic and cryo‐electron microscopic reconstructions of ribosomes have revolutionized our understanding of the translation process. The superposed illustration shows the impressive structural similarity of prokaryotic and eukaryotic ribosomes.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.200200544</identifier><identifier>PMID: 12900959</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>amino acids ; Bacterial Proteins - chemistry ; Cryoelectron Microscopy - methods ; Crystallography, X-Ray ; Models, Molecular ; Nucleic Acid Conformation ; Protein Conformation ; proteins ; Ribosomal Proteins - chemistry ; ribosomes ; Ribosomes - chemistry ; Ribosomes - physiology ; Ribosomes - ultrastructure ; RNA ; RNA, Ribosomal - chemistry ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - ultrastructure ; Thermus thermophilus ; Thermus thermophilus - chemistry ; Thermus thermophilus - ultrastructure ; translation</subject><ispartof>Angewandte Chemie International Edition, 2003-08, Vol.42 (30), p.3464-3486</ispartof><rights>Copyright © 2003 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3</citedby><cites>FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12900959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wilson, Daniel N.</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><title>The Ribosome through the Looking Glass</title><title>Angewandte Chemie International Edition</title><addtitle>Angewandte Chemie International Edition</addtitle><description>For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA–protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 different proteins, and have a molecular mass totaling over 2.5 million Daltons. The past few years have seen the resolution of structures at the atomic level for both large and small subunits and of the complete 70S ribosome from Thermus thermophilus at a resolution of 5.5‐Å. Soaking of small ligands (such as antibiotics, substrate analogues, and small translational factors) into the crystals of the subunits has revolutionized our understanding of the central functions of the ribosome. Coupled with the power of cryo‐electron microscopic studies of translation complexes, a collection of snap‐shots is accumulating, which can be assembled to create a likely motion picture of the bacterial ribosome during translation. Recent analyses show yeast ribosomes have a remarkable structural similarity to bacterial ribosomes. This Review aims to follow the bacterial ribosome through each sequential “frame” of the translation cycle, emphasizing at each point the features that are found in all organisms. One for all: Ribosomes are the translation machines of the cell which convert genetic information into protein structure in the same manner in all animals. Recent crystallographic and cryo‐electron microscopic reconstructions of ribosomes have revolutionized our understanding of the translation process. The superposed illustration shows the impressive structural similarity of prokaryotic and eukaryotic ribosomes.</description><subject>amino acids</subject><subject>Bacterial Proteins - chemistry</subject><subject>Cryoelectron Microscopy - methods</subject><subject>Crystallography, X-Ray</subject><subject>Models, Molecular</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Conformation</subject><subject>proteins</subject><subject>Ribosomal Proteins - chemistry</subject><subject>ribosomes</subject><subject>Ribosomes - chemistry</subject><subject>Ribosomes - physiology</subject><subject>Ribosomes - ultrastructure</subject><subject>RNA</subject><subject>RNA, Ribosomal - chemistry</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Thermus thermophilus</subject><subject>Thermus thermophilus - chemistry</subject><subject>Thermus thermophilus - ultrastructure</subject><subject>translation</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAYhDdGI4hePZqeuBX3e7tHQhCIDSYG9bjZtluotCx2aZR_75IS9MZp5vDM5H0HgHsEBwhC_Kg3hRlg7yBklF6ALmIYhUQIcuk9JSQUEUMdcOPcp6eiCPJr0EFYQiiZ7IL-YmWC1yKxzlYm2K1q2yxXXk0QW7suNstgUmrnbsFVrktn7o7aA29P48VoGsYvk9loGIcpFZyGEU64kIzTiGGMcoaMyTTnMksSqTHhOUZRJKlAnKUZTKBOGc4Q1ijlaYaNJj3Qb3u3tf1qjNupqnCpKUu9MbZxShD_HmXwLIghJ8Tf4cFBC6a1da42udrWRaXrvUJQHSZUhwnVaUIfeDg2N0llsj_8uJkHZAt8F6XZn6lTw_ls_L88bLOF25mfU1bXa8UFEUx9zCcqHr0zMn2eq5j8Ajfbifo</recordid><startdate>20030804</startdate><enddate>20030804</enddate><creator>Wilson, Daniel N.</creator><creator>Nierhaus, Knud H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20030804</creationdate><title>The Ribosome through the Looking Glass</title><author>Wilson, Daniel N. ; Nierhaus, Knud H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>amino acids</topic><topic>Bacterial Proteins - chemistry</topic><topic>Cryoelectron Microscopy - methods</topic><topic>Crystallography, X-Ray</topic><topic>Models, Molecular</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Conformation</topic><topic>proteins</topic><topic>Ribosomal Proteins - chemistry</topic><topic>ribosomes</topic><topic>Ribosomes - chemistry</topic><topic>Ribosomes - physiology</topic><topic>Ribosomes - ultrastructure</topic><topic>RNA</topic><topic>RNA, Ribosomal - chemistry</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Thermus thermophilus</topic><topic>Thermus thermophilus - chemistry</topic><topic>Thermus thermophilus - ultrastructure</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilson, Daniel N.</creatorcontrib><creatorcontrib>Nierhaus, Knud H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilson, Daniel N.</au><au>Nierhaus, Knud H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ribosome through the Looking Glass</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angewandte Chemie International Edition</addtitle><date>2003-08-04</date><risdate>2003</risdate><volume>42</volume><issue>30</issue><spage>3464</spage><epage>3486</epage><pages>3464-3486</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>For almost 20 years crystallographers have sought to solve the structure of the ribosome, the largest and most complicated RNA–protein complex in the cell. All ribosomes are composed of a large and small subunit which for the humble bacterial ribosome comprise more than 4000 ribonucleotides, 54 different proteins, and have a molecular mass totaling over 2.5 million Daltons. The past few years have seen the resolution of structures at the atomic level for both large and small subunits and of the complete 70S ribosome from Thermus thermophilus at a resolution of 5.5‐Å. Soaking of small ligands (such as antibiotics, substrate analogues, and small translational factors) into the crystals of the subunits has revolutionized our understanding of the central functions of the ribosome. Coupled with the power of cryo‐electron microscopic studies of translation complexes, a collection of snap‐shots is accumulating, which can be assembled to create a likely motion picture of the bacterial ribosome during translation. Recent analyses show yeast ribosomes have a remarkable structural similarity to bacterial ribosomes. This Review aims to follow the bacterial ribosome through each sequential “frame” of the translation cycle, emphasizing at each point the features that are found in all organisms. One for all: Ribosomes are the translation machines of the cell which convert genetic information into protein structure in the same manner in all animals. Recent crystallographic and cryo‐electron microscopic reconstructions of ribosomes have revolutionized our understanding of the translation process. The superposed illustration shows the impressive structural similarity of prokaryotic and eukaryotic ribosomes.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>12900959</pmid><doi>10.1002/anie.200200544</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2003-08, Vol.42 (30), p.3464-3486
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_73521450
source Wiley-Blackwell Read & Publish Collection
subjects amino acids
Bacterial Proteins - chemistry
Cryoelectron Microscopy - methods
Crystallography, X-Ray
Models, Molecular
Nucleic Acid Conformation
Protein Conformation
proteins
Ribosomal Proteins - chemistry
ribosomes
Ribosomes - chemistry
Ribosomes - physiology
Ribosomes - ultrastructure
RNA
RNA, Ribosomal - chemistry
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - ultrastructure
Thermus thermophilus
Thermus thermophilus - chemistry
Thermus thermophilus - ultrastructure
translation
title The Ribosome through the Looking Glass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T23%3A16%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ribosome%20through%20the%20Looking%20Glass&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Wilson,%20Daniel%20N.&rft.date=2003-08-04&rft.volume=42&rft.issue=30&rft.spage=3464&rft.epage=3486&rft.pages=3464-3486&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.200200544&rft_dat=%3Cproquest_cross%3E20633648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4764-82b67956485221f51eeda669dbb9a236f2188947165cd0b0ac52d12a1c6cd2ea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20633648&rft_id=info:pmid/12900959&rfr_iscdi=true