Loading…

Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study

Two- or 100-Hz electrical acupoint stimulation (EAS) can induce analgesia via distinct central mechanisms. It has long been known that the extent of EAS analgesia showed tremendous difference among subjects. Functional MRI (fMRI) studies were performed to allocate the possible mechanisms underlying...

Full description

Saved in:
Bibliographic Details
Published in:Brain research 2003-08, Vol.982 (2), p.168-178
Main Authors: Zhang, Wei-Ting, Jin, Zhen, Cui, Guo-Hong, Zhang, Kui-Ling, Zhang, Lei, Zeng, Ya-Wei, Luo, Fei, Chen, Andrew C.N., Han, Ji-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Two- or 100-Hz electrical acupoint stimulation (EAS) can induce analgesia via distinct central mechanisms. It has long been known that the extent of EAS analgesia showed tremendous difference among subjects. Functional MRI (fMRI) studies were performed to allocate the possible mechanisms underlying the frequency specificity as well as individual variability of EAS analgesia. In either frequencies, the averaged fMRI activation levels of bilateral secondary somatosensory area and insula, contralateral anterior cingulate cortex and thalamus were positively correlated with the EAS-induced analgesic effect across the subjects. In 2-Hz EAS group, positive correlations were observed in contralateral primary motor area, supplementary motor area, and ipsilateral superior temporal gyrus, while negative correlations were found in bilateral hippocampus. In 100-Hz EAS group, positive correlations were observed in contralateral inferior parietal lobule, ipsilateral anterior cingulate cortex, nucleus accumbens, and pons, while negative correlation was detected in contralateral amygdala. These results suggest that functional activities of certain brain areas might be correlated with the effect of EAS-induced analgesia, in a frequency-dependent dynamic. EAS-induced analgesia with low and high frequencies seems to be mediated by different, though overlapped, brain networks. The differential activations/de-activations in brain networks across subjects may provide a neurobiological explanation for the mechanisms of the induction and the individual variability of analgesic effect induced by EAS, or that of manual acupuncture as well.
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(03)02983-4