Loading…
Brain volumes characterisation using hierarchical neural networks
Objective knowledge of tissue density distribution in CT/MRI brain datasets can be related to anatomical or neuro-functional regions for assessing pathologic conditions characterised by slight differences. The process of monitoring illness and its treatment could be then improved by a suitable detec...
Saved in:
Published in: | Artificial intelligence in medicine 2003-07, Vol.28 (3), p.307-322 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objective knowledge of tissue density distribution in CT/MRI brain datasets can be related to anatomical or neuro-functional regions for assessing pathologic conditions characterised by slight differences. The process of monitoring illness and its treatment could be then improved by a suitable detection of these variations. In this paper, we present an approach for three-dimensional (3D) classification of brain tissue densities based on a hierarchical artificial neural network (ANN) able to classify the single voxels of the examined datasets. The method developed was tested on case studies selected by an expert neuro-radiologist and consisting of both normal and pathological conditions. The results obtained were submitted for validation to a group of physicians and they judged the system to be really effective in practical applications. |
---|---|
ISSN: | 0933-3657 1873-2860 |
DOI: | 10.1016/S0933-3657(03)00061-7 |