Loading…
Real-Time Monitoring of 4-Vinylguaiacol, Guaiacol, and Phenol during Coffee Roasting by Resonant Laser Ionization Time-of-Flight Mass Spectrometry
The formation of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting was monitored in real-time, using resonance enhanced multiphoton ionization and time-of-flight mass spectrometry. A model is proposed, based on two connected reaction channels. One channel, termed the “low activation energ...
Saved in:
Published in: | Journal of agricultural and food chemistry 2003-09, Vol.51 (19), p.5768-5773 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The formation of 4-vinylguaiacol, guaiacol, and phenol during coffee roasting was monitored in real-time, using resonance enhanced multiphoton ionization and time-of-flight mass spectrometry. A model is proposed, based on two connected reaction channels. One channel, termed the “low activation energy” channel, consists of ester hydrolysis of 5-FQA followed by decarboxylation of the ferulic acid to form 4-vinylguaiacol, and finally polymerization at the vinyl group to form partly insoluble polymers (coffee melanoidins). The second “high activation energy” channel opens up once the beans have reached higher temperatures. It leads to formation of guaiacol, via oxidation of 4-vinylguaiacol, and subsequently to phenol and other phenolic VOCs. This work aims at developing strategies to modify the composition of coffee flavor compounds based on the time−temperature history during roasting. Keywords: Coffee; aroma; roasting; real-time analysis; mass spectrometry; resonant laser ionization |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/jf0341767 |