Loading…
Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato
Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μM $\text{gibberellin}_{4+7}$ were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing o...
Saved in:
Published in: | Plant physiology (Bethesda) 2003-09, Vol.133 (1), p.145-160 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793 |
---|---|
cites | cdi_FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793 |
container_end_page | 160 |
container_issue | 1 |
container_start_page | 145 |
container_title | Plant physiology (Bethesda) |
container_volume | 133 |
creator | Downie, A.B Zhang, D Dirk, L.M.A Thacker, R.R Pfeiffer, J.A Drake, J.L Levy, A.A Butterfield, D.A Buxton, J.W Snyder, J.C |
description | Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μM $\text{gibberellin}_{4+7}$ were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on $\text{gibberellin}_{4+7}$ did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N2. The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process. |
doi_str_mv | 10.1104/pp.103.022632 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_73624491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4281325</jstor_id><sourcerecordid>4281325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793</originalsourceid><addsrcrecordid>eNpVkctv1DAQxi1ERZfCkRuCXOCWrZ-Jc-CAVjwqVeIAPVsTZ9JmldjBdkD973E3Sx8nz_j7zTe2PkLeMLpljMrzed4yKraU80rwZ2TDlOAlV1I_JxtKc021bk7Jyxj3lFImmHxBThlvaio135D9zk_T4gYLafCuaDH9RXRFusFigoTBwVgkjAkKcN3hGqc23Pq79tyHAl3n44xhKqDv0ab_cEphaJfcFEN289nLvyInPYwRXx_PM3L19cuv3ffy8se3i93ny9Iq1aQSrKK8b9pKaKVtU2tbIwqkqlYgbYtMtUz0VYcSOxQ1WIbQYVcp3die1404I59W33lpJ-wsuhRgNHMYJgi3xsNgnipuuDHX_o9hTaUaluc_HueD_73k75hpiBbHERz6JZpaVFzKA1iuoA0-xoD9_Q5GzV04Zp5zKcwaTubfPX7YA31MIwMfjgBEC2MfwNkhPnCKcVUfjN6u3D4mH-51yTUTXGX5_Sr34A1ch2xx9ZPn7CmjWklZi3_eg62m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>73624491</pqid></control><display><type>article</type><title>Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Downie, A.B ; Zhang, D ; Dirk, L.M.A ; Thacker, R.R ; Pfeiffer, J.A ; Drake, J.L ; Levy, A.A ; Butterfield, D.A ; Buxton, J.W ; Snyder, J.C</creator><creatorcontrib>Downie, A.B ; Zhang, D ; Dirk, L.M.A ; Thacker, R.R ; Pfeiffer, J.A ; Drake, J.L ; Levy, A.A ; Butterfield, D.A ; Buxton, J.W ; Snyder, J.C</creatorcontrib><description>Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μM $\text{gibberellin}_{4+7}$ were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on $\text{gibberellin}_{4+7}$ did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N2. The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.103.022632</identifier><identifier>PMID: 12970482</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>alleles ; anthocyanins ; Anthocyanins - biosynthesis ; Biological and medical sciences ; catalase ; Cell Communication - genetics ; Cell Communication - physiology ; Development and Hormone Action ; embryo (plant) ; endosperm ; Enzymes ; Enzymes - genetics ; Enzymes - metabolism ; epidermis (plant) ; Fructification and ripening ; Fruits ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; genetic complementation ; Genetic Complementation Test ; Genetic mutation ; Genotypes ; Germination ; Germination - drug effects ; Germination - physiology ; gibberellic acid ; Gibberellins - pharmacology ; Lycopersicon esculentum - genetics ; Lycopersicon esculentum - growth & development ; Lycopersicon esculentum - metabolism ; melanin ; Melanins - biosynthesis ; mutants ; Mutation ; peroxidase ; pigmentation ; Pigments ; Pigments, Biological - biosynthesis ; Pigments, Biological - chemistry ; plant anatomy ; Plant Epidermis - genetics ; Plant Epidermis - growth & development ; Plant Epidermis - metabolism ; Plant physiology and development ; plant proteins ; Plants ; Proanthocyanidins - biosynthesis ; reactive oxygen species ; Reactive Oxygen Species - metabolism ; Seed germination ; Seeds ; Seeds - genetics ; Seeds - growth & development ; Seeds - metabolism ; Solanum lycopersicum var. lycopersicum ; superoxide dismutase ; Testa ; tomatoes ; vegetable crops ; Vegetative and sexual reproduction, floral biology, fructification</subject><ispartof>Plant physiology (Bethesda), 2003-09, Vol.133 (1), p.145-160</ispartof><rights>Copyright 2003 American Society of Plant Biologists</rights><rights>2003 INIST-CNRS</rights><rights>Copyright © 2003, The American Society for Plant Biologists 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793</citedby><cites>FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4281325$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4281325$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,58237,58470</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15125732$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12970482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Downie, A.B</creatorcontrib><creatorcontrib>Zhang, D</creatorcontrib><creatorcontrib>Dirk, L.M.A</creatorcontrib><creatorcontrib>Thacker, R.R</creatorcontrib><creatorcontrib>Pfeiffer, J.A</creatorcontrib><creatorcontrib>Drake, J.L</creatorcontrib><creatorcontrib>Levy, A.A</creatorcontrib><creatorcontrib>Butterfield, D.A</creatorcontrib><creatorcontrib>Buxton, J.W</creatorcontrib><creatorcontrib>Snyder, J.C</creatorcontrib><title>Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μM $\text{gibberellin}_{4+7}$ were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on $\text{gibberellin}_{4+7}$ did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N2. The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process.</description><subject>alleles</subject><subject>anthocyanins</subject><subject>Anthocyanins - biosynthesis</subject><subject>Biological and medical sciences</subject><subject>catalase</subject><subject>Cell Communication - genetics</subject><subject>Cell Communication - physiology</subject><subject>Development and Hormone Action</subject><subject>embryo (plant)</subject><subject>endosperm</subject><subject>Enzymes</subject><subject>Enzymes - genetics</subject><subject>Enzymes - metabolism</subject><subject>epidermis (plant)</subject><subject>Fructification and ripening</subject><subject>Fruits</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>genetic complementation</subject><subject>Genetic Complementation Test</subject><subject>Genetic mutation</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Germination - drug effects</subject><subject>Germination - physiology</subject><subject>gibberellic acid</subject><subject>Gibberellins - pharmacology</subject><subject>Lycopersicon esculentum - genetics</subject><subject>Lycopersicon esculentum - growth & development</subject><subject>Lycopersicon esculentum - metabolism</subject><subject>melanin</subject><subject>Melanins - biosynthesis</subject><subject>mutants</subject><subject>Mutation</subject><subject>peroxidase</subject><subject>pigmentation</subject><subject>Pigments</subject><subject>Pigments, Biological - biosynthesis</subject><subject>Pigments, Biological - chemistry</subject><subject>plant anatomy</subject><subject>Plant Epidermis - genetics</subject><subject>Plant Epidermis - growth & development</subject><subject>Plant Epidermis - metabolism</subject><subject>Plant physiology and development</subject><subject>plant proteins</subject><subject>Plants</subject><subject>Proanthocyanidins - biosynthesis</subject><subject>reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Seed germination</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - growth & development</subject><subject>Seeds - metabolism</subject><subject>Solanum lycopersicum var. lycopersicum</subject><subject>superoxide dismutase</subject><subject>Testa</subject><subject>tomatoes</subject><subject>vegetable crops</subject><subject>Vegetative and sexual reproduction, floral biology, fructification</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpVkctv1DAQxi1ERZfCkRuCXOCWrZ-Jc-CAVjwqVeIAPVsTZ9JmldjBdkD973E3Sx8nz_j7zTe2PkLeMLpljMrzed4yKraU80rwZ2TDlOAlV1I_JxtKc021bk7Jyxj3lFImmHxBThlvaio135D9zk_T4gYLafCuaDH9RXRFusFigoTBwVgkjAkKcN3hGqc23Pq79tyHAl3n44xhKqDv0ab_cEphaJfcFEN289nLvyInPYwRXx_PM3L19cuv3ffy8se3i93ny9Iq1aQSrKK8b9pKaKVtU2tbIwqkqlYgbYtMtUz0VYcSOxQ1WIbQYVcp3die1404I59W33lpJ-wsuhRgNHMYJgi3xsNgnipuuDHX_o9hTaUaluc_HueD_73k75hpiBbHERz6JZpaVFzKA1iuoA0-xoD9_Q5GzV04Zp5zKcwaTubfPX7YA31MIwMfjgBEC2MfwNkhPnCKcVUfjN6u3D4mH-51yTUTXGX5_Sr34A1ch2xx9ZPn7CmjWklZi3_eg62m</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Downie, A.B</creator><creator>Zhang, D</creator><creator>Dirk, L.M.A</creator><creator>Thacker, R.R</creator><creator>Pfeiffer, J.A</creator><creator>Drake, J.L</creator><creator>Levy, A.A</creator><creator>Butterfield, D.A</creator><creator>Buxton, J.W</creator><creator>Snyder, J.C</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>The American Society for Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030901</creationdate><title>Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato</title><author>Downie, A.B ; Zhang, D ; Dirk, L.M.A ; Thacker, R.R ; Pfeiffer, J.A ; Drake, J.L ; Levy, A.A ; Butterfield, D.A ; Buxton, J.W ; Snyder, J.C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>alleles</topic><topic>anthocyanins</topic><topic>Anthocyanins - biosynthesis</topic><topic>Biological and medical sciences</topic><topic>catalase</topic><topic>Cell Communication - genetics</topic><topic>Cell Communication - physiology</topic><topic>Development and Hormone Action</topic><topic>embryo (plant)</topic><topic>endosperm</topic><topic>Enzymes</topic><topic>Enzymes - genetics</topic><topic>Enzymes - metabolism</topic><topic>epidermis (plant)</topic><topic>Fructification and ripening</topic><topic>Fruits</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>genetic complementation</topic><topic>Genetic Complementation Test</topic><topic>Genetic mutation</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Germination - drug effects</topic><topic>Germination - physiology</topic><topic>gibberellic acid</topic><topic>Gibberellins - pharmacology</topic><topic>Lycopersicon esculentum - genetics</topic><topic>Lycopersicon esculentum - growth & development</topic><topic>Lycopersicon esculentum - metabolism</topic><topic>melanin</topic><topic>Melanins - biosynthesis</topic><topic>mutants</topic><topic>Mutation</topic><topic>peroxidase</topic><topic>pigmentation</topic><topic>Pigments</topic><topic>Pigments, Biological - biosynthesis</topic><topic>Pigments, Biological - chemistry</topic><topic>plant anatomy</topic><topic>Plant Epidermis - genetics</topic><topic>Plant Epidermis - growth & development</topic><topic>Plant Epidermis - metabolism</topic><topic>Plant physiology and development</topic><topic>plant proteins</topic><topic>Plants</topic><topic>Proanthocyanidins - biosynthesis</topic><topic>reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Seed germination</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - growth & development</topic><topic>Seeds - metabolism</topic><topic>Solanum lycopersicum var. lycopersicum</topic><topic>superoxide dismutase</topic><topic>Testa</topic><topic>tomatoes</topic><topic>vegetable crops</topic><topic>Vegetative and sexual reproduction, floral biology, fructification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Downie, A.B</creatorcontrib><creatorcontrib>Zhang, D</creatorcontrib><creatorcontrib>Dirk, L.M.A</creatorcontrib><creatorcontrib>Thacker, R.R</creatorcontrib><creatorcontrib>Pfeiffer, J.A</creatorcontrib><creatorcontrib>Drake, J.L</creatorcontrib><creatorcontrib>Levy, A.A</creatorcontrib><creatorcontrib>Butterfield, D.A</creatorcontrib><creatorcontrib>Buxton, J.W</creatorcontrib><creatorcontrib>Snyder, J.C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Downie, A.B</au><au>Zhang, D</au><au>Dirk, L.M.A</au><au>Thacker, R.R</au><au>Pfeiffer, J.A</au><au>Drake, J.L</au><au>Levy, A.A</au><au>Butterfield, D.A</au><au>Buxton, J.W</au><au>Snyder, J.C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>133</volume><issue>1</issue><spage>145</spage><epage>160</epage><pages>145-160</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Two tomato (Lycopersicon esculentum) mutants with dark testae displaying poor germination rate and percentage on both water and 100 μM $\text{gibberellin}_{4+7}$ were recovered. The mutants were allelic (black seed1-1; bks1-1 and bks1-2), inherited in Mendelian fashion as a recessive gene residing on chromosome 11. They are not allelic to bs (brown seed) -1, -2, or -4, which impair seed germination and possess dark testae. The bks/bs mutants accumulated dark pigment in the cell layers of the testa above the endothelium, which itself accumulated proanthocyanidins similar to wild type. The poor germination performance of bks mutant seeds was because of impediment of the mutant testae to radicle egress. Imbibition on $\text{gibberellin}_{4+7}$ did not ameliorate germination percentage or rate. The toughening of the bks testa and associated poor germination were partially overcome when seeds were not dried before germination or were dried under N2. The seeds of the bks mutant have elevated activity of at least one enzyme responsible for the detoxification of reactive oxygen species. The bks mutant is epistatic to 12 anthocyaninless mutants of tomato. Bio- and physicochemical analysis of the bks testa determined that it accumulated a melanic substance. Inheritance of bks/bs mutations contrasts with that of the anthocyaninless mutants, which are inherited according to the genotype of the maternally derived testa. This suggests that the testa manufactures components before its demise that can maximize testa strength, whereas the endosperm/embryo produces factors that are conveyed to the testa, mitigating this process.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>12970482</pmid><doi>10.1104/pp.103.022632</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2003-09, Vol.133 (1), p.145-160 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_73624491 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | alleles anthocyanins Anthocyanins - biosynthesis Biological and medical sciences catalase Cell Communication - genetics Cell Communication - physiology Development and Hormone Action embryo (plant) endosperm Enzymes Enzymes - genetics Enzymes - metabolism epidermis (plant) Fructification and ripening Fruits Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Enzymologic Gene Expression Regulation, Plant genetic complementation Genetic Complementation Test Genetic mutation Genotypes Germination Germination - drug effects Germination - physiology gibberellic acid Gibberellins - pharmacology Lycopersicon esculentum - genetics Lycopersicon esculentum - growth & development Lycopersicon esculentum - metabolism melanin Melanins - biosynthesis mutants Mutation peroxidase pigmentation Pigments Pigments, Biological - biosynthesis Pigments, Biological - chemistry plant anatomy Plant Epidermis - genetics Plant Epidermis - growth & development Plant Epidermis - metabolism Plant physiology and development plant proteins Plants Proanthocyanidins - biosynthesis reactive oxygen species Reactive Oxygen Species - metabolism Seed germination Seeds Seeds - genetics Seeds - growth & development Seeds - metabolism Solanum lycopersicum var. lycopersicum superoxide dismutase Testa tomatoes vegetable crops Vegetative and sexual reproduction, floral biology, fructification |
title | Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T17%3A47%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication%20between%20the%20maternal%20testa%20and%20the%20embryo%20and/or%20endosperm%20affect%20testa%20attributes%20in%20tomato&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Downie,%20A.B&rft.date=2003-09-01&rft.volume=133&rft.issue=1&rft.spage=145&rft.epage=160&rft.pages=145-160&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.103.022632&rft_dat=%3Cjstor_pubme%3E4281325%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c559t-ac502f9b63858c978c7ee3e0575a4cbe15b13f6de4ede37ac1eaded6589cf2793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=73624491&rft_id=info:pmid/12970482&rft_jstor_id=4281325&rfr_iscdi=true |