Loading…

On the concept of attractor for community-dynamical processes I: the case of unstructured populations

We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community po...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mathematical biology 2003-09, Vol.47 (3), p.222-234
Main Authors: Jacobs, F J A, Metz, J A J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c355t-43955903295647b7db194ffa2c982242129021061d772ed1a680dcaae1622af3
cites
container_end_page 234
container_issue 3
container_start_page 222
container_title Journal of mathematical biology
container_volume 47
creator Jacobs, F J A
Metz, J A J
description We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community populations can go extinct at low values of their densities.
doi_str_mv 10.1007/s00285-003-0204-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73631667</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084893371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-43955903295647b7db194ffa2c982242129021061d772ed1a680dcaae1622af3</originalsourceid><addsrcrecordid>eNqFkTtPwzAUhS0EglL4ASwoYmAL3GvHdsOGKl4SUpfulus4IiiJgx9D-fW4aiUkFoYrD_c7R-f6EHKFcIcA8j4A0AUvAVgJFKry-4jMsGK0xArFMZkByxuxQHpGzkP4BEDJazwlZ0hrzisuZ8SuxiJ-2MK40dgpFq4tdIxem-h80eYxbhjS2MVt2WxHPXRG98XknbEh2FC8PezVOtidNI0h-mRi8rYpJjelXsfOjeGCnLS6D_by8M7J-vlpvXwt31cvb8vH99IwzmNZsRyrBpbTiUpuZLPBumpbTU29oLSiOTZQBIGNlNQ2qMUCGqO1RUGpbtmc3O5tc8CvZENUQxeM7Xs9WpeCkkwwFEL-C2JNBeX5X-fk5g_46ZIf8w1KIJOcC8YzhHvIeBeCt62afDdov1UIaleU2helsqHaFaW-s-b6YJw2g21-FYdm2A_1_I31</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613755635</pqid></control><display><type>article</type><title>On the concept of attractor for community-dynamical processes I: the case of unstructured populations</title><source>Springer Nature</source><creator>Jacobs, F J A ; Metz, J A J</creator><creatorcontrib>Jacobs, F J A ; Metz, J A J</creatorcontrib><description>We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community populations can go extinct at low values of their densities.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-003-0204-z</identifier><identifier>PMID: 12955457</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Algorithms ; Computer Simulation ; Ecosystem ; Models, Biological ; Nonlinear Dynamics ; Population Density ; Population Dynamics ; Terminology as Topic</subject><ispartof>Journal of mathematical biology, 2003-09, Vol.47 (3), p.222-234</ispartof><rights>Springer-Verlag Berlin Heidelberg 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-43955903295647b7db194ffa2c982242129021061d772ed1a680dcaae1622af3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12955457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobs, F J A</creatorcontrib><creatorcontrib>Metz, J A J</creatorcontrib><title>On the concept of attractor for community-dynamical processes I: the case of unstructured populations</title><title>Journal of mathematical biology</title><addtitle>J Math Biol</addtitle><description>We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community populations can go extinct at low values of their densities.</description><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Ecosystem</subject><subject>Models, Biological</subject><subject>Nonlinear Dynamics</subject><subject>Population Density</subject><subject>Population Dynamics</subject><subject>Terminology as Topic</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkTtPwzAUhS0EglL4ASwoYmAL3GvHdsOGKl4SUpfulus4IiiJgx9D-fW4aiUkFoYrD_c7R-f6EHKFcIcA8j4A0AUvAVgJFKry-4jMsGK0xArFMZkByxuxQHpGzkP4BEDJazwlZ0hrzisuZ8SuxiJ-2MK40dgpFq4tdIxem-h80eYxbhjS2MVt2WxHPXRG98XknbEh2FC8PezVOtidNI0h-mRi8rYpJjelXsfOjeGCnLS6D_by8M7J-vlpvXwt31cvb8vH99IwzmNZsRyrBpbTiUpuZLPBumpbTU29oLSiOTZQBIGNlNQ2qMUCGqO1RUGpbtmc3O5tc8CvZENUQxeM7Xs9WpeCkkwwFEL-C2JNBeX5X-fk5g_46ZIf8w1KIJOcC8YzhHvIeBeCt62afDdov1UIaleU2helsqHaFaW-s-b6YJw2g21-FYdm2A_1_I31</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Jacobs, F J A</creator><creator>Metz, J A J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SN</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20030901</creationdate><title>On the concept of attractor for community-dynamical processes I: the case of unstructured populations</title><author>Jacobs, F J A ; Metz, J A J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-43955903295647b7db194ffa2c982242129021061d772ed1a680dcaae1622af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Ecosystem</topic><topic>Models, Biological</topic><topic>Nonlinear Dynamics</topic><topic>Population Density</topic><topic>Population Dynamics</topic><topic>Terminology as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, F J A</creatorcontrib><creatorcontrib>Metz, J A J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Ecology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, F J A</au><au>Metz, J A J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the concept of attractor for community-dynamical processes I: the case of unstructured populations</atitle><jtitle>Journal of mathematical biology</jtitle><addtitle>J Math Biol</addtitle><date>2003-09-01</date><risdate>2003</risdate><volume>47</volume><issue>3</issue><spage>222</spage><epage>234</epage><pages>222-234</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community populations can go extinct at low values of their densities.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>12955457</pmid><doi>10.1007/s00285-003-0204-z</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0303-6812
ispartof Journal of mathematical biology, 2003-09, Vol.47 (3), p.222-234
issn 0303-6812
1432-1416
language eng
recordid cdi_proquest_miscellaneous_73631667
source Springer Nature
subjects Algorithms
Computer Simulation
Ecosystem
Models, Biological
Nonlinear Dynamics
Population Density
Population Dynamics
Terminology as Topic
title On the concept of attractor for community-dynamical processes I: the case of unstructured populations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20concept%20of%20attractor%20for%20community-dynamical%20processes%20I:%20the%20case%20of%20unstructured%20populations&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Jacobs,%20F%20J%20A&rft.date=2003-09-01&rft.volume=47&rft.issue=3&rft.spage=222&rft.epage=234&rft.pages=222-234&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-003-0204-z&rft_dat=%3Cproquest_cross%3E2084893371%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c355t-43955903295647b7db194ffa2c982242129021061d772ed1a680dcaae1622af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=613755635&rft_id=info:pmid/12955457&rfr_iscdi=true