Loading…

Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles

By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research...

Full description

Saved in:
Bibliographic Details
Published in:Environmental science & technology 2003-08, Vol.37 (15), p.3458-3466
Main Authors: Lloyd, Shannon M, Lave, Lester B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3
cites cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3
container_end_page 3466
container_issue 15
container_start_page 3458
container_title Environmental science & technology
container_volume 37
creator Lloyd, Shannon M
Lave, Lester B
description By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.
doi_str_mv 10.1021/es026023q
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73644258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16167810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</originalsourceid><addsrcrecordid>eNqF0U1rFDEYB_Agil2rB7-ABEHBw-iT98mxLlstrC_FregpZDIZSZ1JtpOZYr-9Kbt0QQ895ZAf_zxP_gg9J_CWACXvfAYqgbKrB2hBBIVK1II8RAsAwirN5I8j9CTnS4BioH6MjgjVUmotF-jnOnQeL29c7_HKpZiG4LCNLV7F6zCmOPg42R6fDds-ODuFFDNOHb7IIf7Cn21MLg3blMPkMw4Rn8xTGlITep-foked7bN_tj-P0cXparP8WK2_fDhbnqwrKxifKg5Ou9ZyqVqhVENqzhUnTovG1tozDjWAtrYhQtCubZjkQjGprBTKMdk5doxe73K3Y7qafZ7MELLzfW-jT3M2RXNORX0vpFoRJYHfC4kkUtUECnz5D7xM8xjLtqZ8NKFMgCrozQ65MeU8-s5sxzDY8cYQMLf1mbv6in2xD5ybwbcHue-rgFd7YLOzfTfa6EI-OFHGB3b7aLVzIU_-z929HX8bqZgSZvP1m3kv-OZcfz83nw651uXDEv8P-Bc877tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230123507</pqid></control><display><type>article</type><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lloyd, Shannon M ; Lave, Lester B</creator><creatorcontrib>Lloyd, Shannon M ; Lave, Lester B</creatorcontrib><description>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&amp;D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&amp;D dictates that consideration of societal benefits will have a large role in setting the R&amp;D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es026023q</identifier><identifier>PMID: 12966996</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Automobiles ; Composite materials ; Conservation of Energy Resources ; Cost-Benefit Analysis ; Exact sciences and technology ; Global environmental pollution ; Materials Testing ; Mechanical engineering. Machine design ; Motor Vehicles ; Nanocomposites ; Nanotechnology ; Nanotechnology - economics ; Nanotechnology - trends ; Pollution ; R&amp;D ; Research &amp; development ; Research Support as Topic</subject><ispartof>Environmental science &amp; technology, 2003-08, Vol.37 (15), p.3458-3466</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</citedby><cites>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15043037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12966996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, Shannon M</creatorcontrib><creatorcontrib>Lave, Lester B</creatorcontrib><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&amp;D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&amp;D dictates that consideration of societal benefits will have a large role in setting the R&amp;D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</description><subject>Applied sciences</subject><subject>Automobiles</subject><subject>Composite materials</subject><subject>Conservation of Energy Resources</subject><subject>Cost-Benefit Analysis</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Materials Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Motor Vehicles</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotechnology - economics</subject><subject>Nanotechnology - trends</subject><subject>Pollution</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research Support as Topic</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rFDEYB_Agil2rB7-ABEHBw-iT98mxLlstrC_FregpZDIZSZ1JtpOZYr-9Kbt0QQ895ZAf_zxP_gg9J_CWACXvfAYqgbKrB2hBBIVK1II8RAsAwirN5I8j9CTnS4BioH6MjgjVUmotF-jnOnQeL29c7_HKpZiG4LCNLV7F6zCmOPg42R6fDds-ODuFFDNOHb7IIf7Cn21MLg3blMPkMw4Rn8xTGlITep-foked7bN_tj-P0cXparP8WK2_fDhbnqwrKxifKg5Ou9ZyqVqhVENqzhUnTovG1tozDjWAtrYhQtCubZjkQjGprBTKMdk5doxe73K3Y7qafZ7MELLzfW-jT3M2RXNORX0vpFoRJYHfC4kkUtUECnz5D7xM8xjLtqZ8NKFMgCrozQ65MeU8-s5sxzDY8cYQMLf1mbv6in2xD5ybwbcHue-rgFd7YLOzfTfa6EI-OFHGB3b7aLVzIU_-z929HX8bqZgSZvP1m3kv-OZcfz83nw651uXDEv8P-Bc877tp</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Lloyd, Shannon M</creator><creator>Lave, Lester B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope><scope>7U6</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><author>Lloyd, Shannon M ; Lave, Lester B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Automobiles</topic><topic>Composite materials</topic><topic>Conservation of Energy Resources</topic><topic>Cost-Benefit Analysis</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Materials Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Motor Vehicles</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotechnology - economics</topic><topic>Nanotechnology - trends</topic><topic>Pollution</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research Support as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Shannon M</creatorcontrib><creatorcontrib>Lave, Lester B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Shannon M</au><au>Lave, Lester B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>37</volume><issue>15</issue><spage>3458</spage><epage>3466</epage><pages>3458-3466</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&amp;D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&amp;D dictates that consideration of societal benefits will have a large role in setting the R&amp;D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12966996</pmid><doi>10.1021/es026023q</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2003-08, Vol.37 (15), p.3458-3466
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_73644258
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Applied sciences
Automobiles
Composite materials
Conservation of Energy Resources
Cost-Benefit Analysis
Exact sciences and technology
Global environmental pollution
Materials Testing
Mechanical engineering. Machine design
Motor Vehicles
Nanocomposites
Nanotechnology
Nanotechnology - economics
Nanotechnology - trends
Pollution
R&D
Research & development
Research Support as Topic
title Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20Cycle%20Economic%20and%20Environmental%20Implications%20of%20Using%20Nanocomposites%20in%20Automobiles&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lloyd,%20Shannon%20M&rft.date=2003-08-01&rft.volume=37&rft.issue=15&rft.spage=3458&rft.epage=3466&rft.pages=3458-3466&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es026023q&rft_dat=%3Cproquest_cross%3E16167810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230123507&rft_id=info:pmid/12966996&rfr_iscdi=true