Loading…
Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles
By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research...
Saved in:
Published in: | Environmental science & technology 2003-08, Vol.37 (15), p.3458-3466 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3 |
---|---|
cites | cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3 |
container_end_page | 3466 |
container_issue | 15 |
container_start_page | 3458 |
container_title | Environmental science & technology |
container_volume | 37 |
creator | Lloyd, Shannon M Lave, Lester B |
description | By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design. |
doi_str_mv | 10.1021/es026023q |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73644258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16167810</sourcerecordid><originalsourceid>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</originalsourceid><addsrcrecordid>eNqF0U1rFDEYB_Agil2rB7-ABEHBw-iT98mxLlstrC_FregpZDIZSZ1JtpOZYr-9Kbt0QQ895ZAf_zxP_gg9J_CWACXvfAYqgbKrB2hBBIVK1II8RAsAwirN5I8j9CTnS4BioH6MjgjVUmotF-jnOnQeL29c7_HKpZiG4LCNLV7F6zCmOPg42R6fDds-ODuFFDNOHb7IIf7Cn21MLg3blMPkMw4Rn8xTGlITep-foked7bN_tj-P0cXparP8WK2_fDhbnqwrKxifKg5Ou9ZyqVqhVENqzhUnTovG1tozDjWAtrYhQtCubZjkQjGprBTKMdk5doxe73K3Y7qafZ7MELLzfW-jT3M2RXNORX0vpFoRJYHfC4kkUtUECnz5D7xM8xjLtqZ8NKFMgCrozQ65MeU8-s5sxzDY8cYQMLf1mbv6in2xD5ybwbcHue-rgFd7YLOzfTfa6EI-OFHGB3b7aLVzIU_-z929HX8bqZgSZvP1m3kv-OZcfz83nw651uXDEv8P-Bc877tp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230123507</pqid></control><display><type>article</type><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Lloyd, Shannon M ; Lave, Lester B</creator><creatorcontrib>Lloyd, Shannon M ; Lave, Lester B</creatorcontrib><description>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es026023q</identifier><identifier>PMID: 12966996</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Automobiles ; Composite materials ; Conservation of Energy Resources ; Cost-Benefit Analysis ; Exact sciences and technology ; Global environmental pollution ; Materials Testing ; Mechanical engineering. Machine design ; Motor Vehicles ; Nanocomposites ; Nanotechnology ; Nanotechnology - economics ; Nanotechnology - trends ; Pollution ; R&D ; Research & development ; Research Support as Topic</subject><ispartof>Environmental science & technology, 2003-08, Vol.37 (15), p.3458-3466</ispartof><rights>Copyright © 2003 American Chemical Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Chemical Society Aug 1, 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</citedby><cites>FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15043037$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12966996$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lloyd, Shannon M</creatorcontrib><creatorcontrib>Lave, Lester B</creatorcontrib><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</description><subject>Applied sciences</subject><subject>Automobiles</subject><subject>Composite materials</subject><subject>Conservation of Energy Resources</subject><subject>Cost-Benefit Analysis</subject><subject>Exact sciences and technology</subject><subject>Global environmental pollution</subject><subject>Materials Testing</subject><subject>Mechanical engineering. Machine design</subject><subject>Motor Vehicles</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Nanotechnology - economics</subject><subject>Nanotechnology - trends</subject><subject>Pollution</subject><subject>R&D</subject><subject>Research & development</subject><subject>Research Support as Topic</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqF0U1rFDEYB_Agil2rB7-ABEHBw-iT98mxLlstrC_FregpZDIZSZ1JtpOZYr-9Kbt0QQ895ZAf_zxP_gg9J_CWACXvfAYqgbKrB2hBBIVK1II8RAsAwirN5I8j9CTnS4BioH6MjgjVUmotF-jnOnQeL29c7_HKpZiG4LCNLV7F6zCmOPg42R6fDds-ODuFFDNOHb7IIf7Cn21MLg3blMPkMw4Rn8xTGlITep-foked7bN_tj-P0cXparP8WK2_fDhbnqwrKxifKg5Ou9ZyqVqhVENqzhUnTovG1tozDjWAtrYhQtCubZjkQjGprBTKMdk5doxe73K3Y7qafZ7MELLzfW-jT3M2RXNORX0vpFoRJYHfC4kkUtUECnz5D7xM8xjLtqZ8NKFMgCrozQ65MeU8-s5sxzDY8cYQMLf1mbv6in2xD5ybwbcHue-rgFd7YLOzfTfa6EI-OFHGB3b7aLVzIU_-z929HX8bqZgSZvP1m3kv-OZcfz83nw651uXDEv8P-Bc877tp</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Lloyd, Shannon M</creator><creator>Lave, Lester B</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7TV</scope><scope>7U6</scope><scope>7QF</scope><scope>8BQ</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>20030801</creationdate><title>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</title><author>Lloyd, Shannon M ; Lave, Lester B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Automobiles</topic><topic>Composite materials</topic><topic>Conservation of Energy Resources</topic><topic>Cost-Benefit Analysis</topic><topic>Exact sciences and technology</topic><topic>Global environmental pollution</topic><topic>Materials Testing</topic><topic>Mechanical engineering. Machine design</topic><topic>Motor Vehicles</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Nanotechnology - economics</topic><topic>Nanotechnology - trends</topic><topic>Pollution</topic><topic>R&D</topic><topic>Research & development</topic><topic>Research Support as Topic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lloyd, Shannon M</creatorcontrib><creatorcontrib>Lave, Lester B</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Aluminium Industry Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lloyd, Shannon M</au><au>Lave, Lester B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2003-08-01</date><risdate>2003</risdate><volume>37</volume><issue>15</issue><spage>3458</spage><epage>3466</epage><pages>3458-3466</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>By reducing the energy and materials required to provide goods and services, nanotechnology has the potential to provide more appealing products while improving environmental performance and sustainability. Whether and how soon this potential could be realized depends on phrasing the right research and development (R&D) questions and pursuing commercialization intelligently. A sufficiently broad perspective at the outset is required to understand economic and technical feasibility, estimate life cycle environmental implications, and minimize unanticipated negative impacts. The rapid rise in federally funded nanotechnology R&D dictates that consideration of societal benefits will have a large role in setting the R&D agenda. We estimate potential selected economic and environmental impacts associated with the use of nanotechnology in the automotive industry. In particular, we project the material processing and fuel economy benefits associated with using a clay−polypropylene nanocomposite instead of steel or aluminum in light-duty vehicle body panels. Although the manufacturing cost is currently higher, a life cycle analysis shows potential benefits in reducing energy use and environment discharges by using a nanocomposite design.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>12966996</pmid><doi>10.1021/es026023q</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2003-08, Vol.37 (15), p.3458-3466 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_73644258 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Applied sciences Automobiles Composite materials Conservation of Energy Resources Cost-Benefit Analysis Exact sciences and technology Global environmental pollution Materials Testing Mechanical engineering. Machine design Motor Vehicles Nanocomposites Nanotechnology Nanotechnology - economics Nanotechnology - trends Pollution R&D Research & development Research Support as Topic |
title | Life Cycle Economic and Environmental Implications of Using Nanocomposites in Automobiles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T07%3A51%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life%20Cycle%20Economic%20and%20Environmental%20Implications%20of%20Using%20Nanocomposites%20in%20Automobiles&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Lloyd,%20Shannon%20M&rft.date=2003-08-01&rft.volume=37&rft.issue=15&rft.spage=3458&rft.epage=3466&rft.pages=3458-3466&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es026023q&rft_dat=%3Cproquest_cross%3E16167810%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a534t-40c9cda467d577b1844741c95ba89e3408009aab1552fdb36457367a657c36fc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=230123507&rft_id=info:pmid/12966996&rfr_iscdi=true |