Loading…
AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA
Rosner, B. (Channing Laboratory, Harvard Medical School, Boston, MA 02115), C. H. Hennekens, E. H. Kass and W. E. Miall. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106: 306–313, 1977. To evaluate the predictive value of blood pressures for future levels, lo...
Saved in:
Published in: | American journal of epidemiology 1977-10, Vol.106 (4), p.306-313 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-49ca42f4df53b5c8df5d95a3ed792ef3bed682ac4d33fd2bccd7ec74228070b33 |
---|---|
cites | |
container_end_page | 313 |
container_issue | 4 |
container_start_page | 306 |
container_title | American journal of epidemiology |
container_volume | 106 |
creator | ROSNER, BERNARD HENNEKENS, CHARLES H. KASS, EDWARD H. MIALL, WILLIAM E. |
description | Rosner, B. (Channing Laboratory, Harvard Medical School, Boston, MA 02115), C. H. Hennekens, E. H. Kass and W. E. Miall. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106: 306–313, 1977. To evaluate the predictive value of blood pressures for future levels, longitudinal measurements were analyzed among Welsh subjects from age 5 to 74 at entry. The measurements were taken on 863 Individuals from the Vale of Glamorgan in 1956, 1960, 1964, and 1971 and on 734 individuals from the Rhondda Fach in 1954, 1958, 1964, and 1971. The tracking correlation, defined as the correlation between blood pressure readings on the same person taken at two different times, Is used as a descriptive measure of the magnitude of the association. The tracking correlations range from 0.25 to 0.6–0.7 with most of the increases occurring before age 20. The tracking correlation depends on initial age, sex, and time interval between measurements. The age-specific tracking correlations decrease as time interval between measurements increases. For a given time interval, the age-specific correlations are slightly higher for females than for males. These findings are very similar for each of the two regions studied. |
doi_str_mv | 10.1093/oxfordjournals.aje.a112466 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_73697131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>73697131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-49ca42f4df53b5c8df5d95a3ed792ef3bed682ac4d33fd2bccd7ec74228070b33</originalsourceid><addsrcrecordid>eNpdkEtLw0AUhQfxVR__wEVQcJc6j2Qm4y6mSQ2EpCYtqJthMjOB1tZopgX990ZaBV0duOecey8fAJcIDhHk5Kb9aNpOL9pN9yqXdigXZigRwh6le2CAPEZdin26DwYQQuxyTPExOLF2ASFC3IdH4JAjyHgwAHE4jt1qEkdpkkZOVJRlnIXTtMidMA-zpyqtnCJxsiIfp9PZKO1nzl1WFCNnUsZVNStjZxROwzNw0PSPmPOdnoJZEk-jezcrxmkUZq4ijK9djyvp4cbTjU9qXwW9au5LYjTj2DSkNpoGWCpPE9JoXCulmVHMwziADNaEnILr7d63rn3fGLsWq7lVZrmUr6bdWMEI5QwR1Aev_gV_YAlEIKUeDXzcp263KdW11namEW_dfCW7T4Gg-AYt_oIWPWixA92XL3YnNvXK6N_qlmxvu1t7btfm49eV3YugjDBf3D8-iySZVDl_KEVOvgCjcIkU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1306646852</pqid></control><display><type>article</type><title>AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA</title><source>Oxford University Press Archive</source><creator>ROSNER, BERNARD ; HENNEKENS, CHARLES H. ; KASS, EDWARD H. ; MIALL, WILLIAM E.</creator><creatorcontrib>ROSNER, BERNARD ; HENNEKENS, CHARLES H. ; KASS, EDWARD H. ; MIALL, WILLIAM E.</creatorcontrib><description>Rosner, B. (Channing Laboratory, Harvard Medical School, Boston, MA 02115), C. H. Hennekens, E. H. Kass and W. E. Miall. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106: 306–313, 1977. To evaluate the predictive value of blood pressures for future levels, longitudinal measurements were analyzed among Welsh subjects from age 5 to 74 at entry. The measurements were taken on 863 Individuals from the Vale of Glamorgan in 1956, 1960, 1964, and 1971 and on 734 individuals from the Rhondda Fach in 1954, 1958, 1964, and 1971. The tracking correlation, defined as the correlation between blood pressure readings on the same person taken at two different times, Is used as a descriptive measure of the magnitude of the association. The tracking correlations range from 0.25 to 0.6–0.7 with most of the increases occurring before age 20. The tracking correlation depends on initial age, sex, and time interval between measurements. The age-specific tracking correlations decrease as time interval between measurements increases. For a given time interval, the age-specific correlations are slightly higher for females than for males. These findings are very similar for each of the two regions studied.</description><identifier>ISSN: 0002-9262</identifier><identifier>EISSN: 1476-6256</identifier><identifier>DOI: 10.1093/oxfordjournals.aje.a112466</identifier><identifier>PMID: 910798</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Adolescent ; Adult ; Age Factors ; Aged ; Blood Pressure ; Child ; Female ; Humans ; Longitudinal Studies ; Male ; Middle Aged ; Sex Factors ; Wales</subject><ispartof>American journal of epidemiology, 1977-10, Vol.106 (4), p.306-313</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-49ca42f4df53b5c8df5d95a3ed792ef3bed682ac4d33fd2bccd7ec74228070b33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/910798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>ROSNER, BERNARD</creatorcontrib><creatorcontrib>HENNEKENS, CHARLES H.</creatorcontrib><creatorcontrib>KASS, EDWARD H.</creatorcontrib><creatorcontrib>MIALL, WILLIAM E.</creatorcontrib><title>AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA</title><title>American journal of epidemiology</title><addtitle>Am J Epidemiol</addtitle><description>Rosner, B. (Channing Laboratory, Harvard Medical School, Boston, MA 02115), C. H. Hennekens, E. H. Kass and W. E. Miall. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106: 306–313, 1977. To evaluate the predictive value of blood pressures for future levels, longitudinal measurements were analyzed among Welsh subjects from age 5 to 74 at entry. The measurements were taken on 863 Individuals from the Vale of Glamorgan in 1956, 1960, 1964, and 1971 and on 734 individuals from the Rhondda Fach in 1954, 1958, 1964, and 1971. The tracking correlation, defined as the correlation between blood pressure readings on the same person taken at two different times, Is used as a descriptive measure of the magnitude of the association. The tracking correlations range from 0.25 to 0.6–0.7 with most of the increases occurring before age 20. The tracking correlation depends on initial age, sex, and time interval between measurements. The age-specific tracking correlations decrease as time interval between measurements increases. For a given time interval, the age-specific correlations are slightly higher for females than for males. These findings are very similar for each of the two regions studied.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Blood Pressure</subject><subject>Child</subject><subject>Female</subject><subject>Humans</subject><subject>Longitudinal Studies</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Sex Factors</subject><subject>Wales</subject><issn>0002-9262</issn><issn>1476-6256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLw0AUhQfxVR__wEVQcJc6j2Qm4y6mSQ2EpCYtqJthMjOB1tZopgX990ZaBV0duOecey8fAJcIDhHk5Kb9aNpOL9pN9yqXdigXZigRwh6le2CAPEZdin26DwYQQuxyTPExOLF2ASFC3IdH4JAjyHgwAHE4jt1qEkdpkkZOVJRlnIXTtMidMA-zpyqtnCJxsiIfp9PZKO1nzl1WFCNnUsZVNStjZxROwzNw0PSPmPOdnoJZEk-jezcrxmkUZq4ijK9djyvp4cbTjU9qXwW9au5LYjTj2DSkNpoGWCpPE9JoXCulmVHMwziADNaEnILr7d63rn3fGLsWq7lVZrmUr6bdWMEI5QwR1Aev_gV_YAlEIKUeDXzcp263KdW11namEW_dfCW7T4Gg-AYt_oIWPWixA92XL3YnNvXK6N_qlmxvu1t7btfm49eV3YugjDBf3D8-iySZVDl_KEVOvgCjcIkU</recordid><startdate>197710</startdate><enddate>197710</enddate><creator>ROSNER, BERNARD</creator><creator>HENNEKENS, CHARLES H.</creator><creator>KASS, EDWARD H.</creator><creator>MIALL, WILLIAM E.</creator><general>Oxford University Press</general><general>School of Hygiene and Public Health of the Johns Hopkins University</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>HVZBN</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope><scope>7X8</scope></search><sort><creationdate>197710</creationdate><title>AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA</title><author>ROSNER, BERNARD ; HENNEKENS, CHARLES H. ; KASS, EDWARD H. ; MIALL, WILLIAM E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-49ca42f4df53b5c8df5d95a3ed792ef3bed682ac4d33fd2bccd7ec74228070b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Blood Pressure</topic><topic>Child</topic><topic>Female</topic><topic>Humans</topic><topic>Longitudinal Studies</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Sex Factors</topic><topic>Wales</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ROSNER, BERNARD</creatorcontrib><creatorcontrib>HENNEKENS, CHARLES H.</creatorcontrib><creatorcontrib>KASS, EDWARD H.</creatorcontrib><creatorcontrib>MIALL, WILLIAM E.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 24</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access & Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access & Build (Plan A) - APAC</collection><collection>Primary Sources Access & Build (Plan A) - Canada</collection><collection>Primary Sources Access & Build (Plan A) - West</collection><collection>Primary Sources Access & Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - Midwest</collection><collection>Primary Sources Access & Build (Plan A) - North Central</collection><collection>Primary Sources Access & Build (Plan A) - Northeast</collection><collection>Primary Sources Access & Build (Plan A) - South Central</collection><collection>Primary Sources Access & Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><collection>MEDLINE - Academic</collection><jtitle>American journal of epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ROSNER, BERNARD</au><au>HENNEKENS, CHARLES H.</au><au>KASS, EDWARD H.</au><au>MIALL, WILLIAM E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA</atitle><jtitle>American journal of epidemiology</jtitle><addtitle>Am J Epidemiol</addtitle><date>1977-10</date><risdate>1977</risdate><volume>106</volume><issue>4</issue><spage>306</spage><epage>313</epage><pages>306-313</pages><issn>0002-9262</issn><eissn>1476-6256</eissn><abstract>Rosner, B. (Channing Laboratory, Harvard Medical School, Boston, MA 02115), C. H. Hennekens, E. H. Kass and W. E. Miall. Age-specific correlation analysis of longitudinal blood pressure data. Am J Epidemiol 106: 306–313, 1977. To evaluate the predictive value of blood pressures for future levels, longitudinal measurements were analyzed among Welsh subjects from age 5 to 74 at entry. The measurements were taken on 863 Individuals from the Vale of Glamorgan in 1956, 1960, 1964, and 1971 and on 734 individuals from the Rhondda Fach in 1954, 1958, 1964, and 1971. The tracking correlation, defined as the correlation between blood pressure readings on the same person taken at two different times, Is used as a descriptive measure of the magnitude of the association. The tracking correlations range from 0.25 to 0.6–0.7 with most of the increases occurring before age 20. The tracking correlation depends on initial age, sex, and time interval between measurements. The age-specific tracking correlations decrease as time interval between measurements increases. For a given time interval, the age-specific correlations are slightly higher for females than for males. These findings are very similar for each of the two regions studied.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>910798</pmid><doi>10.1093/oxfordjournals.aje.a112466</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9262 |
ispartof | American journal of epidemiology, 1977-10, Vol.106 (4), p.306-313 |
issn | 0002-9262 1476-6256 |
language | eng |
recordid | cdi_proquest_miscellaneous_73697131 |
source | Oxford University Press Archive |
subjects | Adolescent Adult Age Factors Aged Blood Pressure Child Female Humans Longitudinal Studies Male Middle Aged Sex Factors Wales |
title | AGE-SPECIFIC CORRELATION ANALYSIS OF LONGITUDINAL BLOOD PRESSURE DATA |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T03%3A28%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AGE-SPECIFIC%20CORRELATION%20ANALYSIS%20OF%20LONGITUDINAL%20BLOOD%20PRESSURE%20DATA&rft.jtitle=American%20journal%20of%20epidemiology&rft.au=ROSNER,%20BERNARD&rft.date=1977-10&rft.volume=106&rft.issue=4&rft.spage=306&rft.epage=313&rft.pages=306-313&rft.issn=0002-9262&rft.eissn=1476-6256&rft_id=info:doi/10.1093/oxfordjournals.aje.a112466&rft_dat=%3Cproquest_cross%3E73697131%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-49ca42f4df53b5c8df5d95a3ed792ef3bed682ac4d33fd2bccd7ec74228070b33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1306646852&rft_id=info:pmid/910798&rfr_iscdi=true |