Loading…

Xrcc3 Is Required for Assembly of Rad51 Complexes in Vivo

Rad51 is a member of a family of eukaryotic proteins related to the bacterial recombinational repair protein RecA. Rad51 protein localizes to multiple subnuclear foci in Chinese hamster ovary cells. Subnuclear Rad51 foci are induced by ionizing radiation or the DNA cross-linking agent cisplatin. For...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1998-08, Vol.273 (34), p.21482-21488
Main Authors: Bishop, Douglas K., Ear, Uy, Bhattacharyya, Anamitra, Calderone, Chris, Beckett, Michael, Weichselbaum, Ralph R., Shinohara, Akira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rad51 is a member of a family of eukaryotic proteins related to the bacterial recombinational repair protein RecA. Rad51 protein localizes to multiple subnuclear foci in Chinese hamster ovary cells. Subnuclear Rad51 foci are induced by ionizing radiation or the DNA cross-linking agent cisplatin. Formation of these foci is likely to reflect assembly of a multimeric form of Rad51 that promotes DNA repair. Formation of damage-induced Rad51 foci does not occur in the Chinese hamster ovary cell line irs1SF, which is sensitive to DNA damaging agents. The Rad51 focus formation defect of irs1SF cells is corrected by a construct that encodes the repair protein Xrcc3. Xrcc3 is a human homolog of Rad51 previously isolated by virtue of its ability to correct the radiation sensitivity of irs1SF cells. Changes in the steady state level of Rad51 protein do not account for the irs1SF defect nor do they account for the appearance of foci following DNA damage. These results suggest that Xrcc3 is required for the assembly or stabilization of a multimeric form of Rad51 during DNA repair. Cell lines defective in two different components of DNA protein kinase formed Rad51 foci in response to damage, indicating DNA protein kinase is not required for damaged-induced mobilization of Rad51.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.34.21482